Pengaruh Kristalinitas terhadap Stabilitas Termal Komposit Termoplastis Berpengisi Silika Xerogel

Nur Aini Fauziyah, Dyah Suci Perwitasari, Primasari Cahya Wardhani, Teuku Andi Fadly

Abstract


Penetian ini bertujuan untuk mengetahui pengaruh kristalinitas terhadap stabilitas termal komposit termoplastis dengan pengisis silika xerogel. Polimer yang digunakan adalah polietilena glikol (PEG 4000) yang merupakan polimer termoplastis. Silika xerogel diekstraksi melalui proses alkali fusion. Silika xerogel yang didapatkan menunjukkan fasa amorf melalui X-Ray Diffraction (XRD). Silika xerogel ditambahakan ke dalam PEG 4000 dengan komposisi yang bervariasi, yaitu, 0, 5, 10, dan 20%. Penambahan silika xerogel menurunkan tingkat kristalinitas komposit karena PEG murni merupakan material semikristalin. Melalui analisis termal menggunakan Thermogravimetric Analysis (TGA), pengaruh kristalinitas komposit tampak jelas pada daerah sebelum polimer mengalami transisi leleh. Namun, pada daerah dekomposisi (T>400°C), pengaruh kristalinitas pada komposit tidak ada lagi. Hasil ini sangat menarik dikarenakan massa dekomposisi akhir menunjukkan nilai yang sama dengan komposisi silika xerogel yang ditambahkan, misalnya pada penambahan 20%, massa yang tersisa setelah dekomposisi adalah 20,77982 %. Oleh karenanya, analisis kristalinitas sangat mendukung hasil analisis termal dengan TGA pada komposit.

Keywords


deformasi; kristalografi; TGA; silika xerogel

Full Text:

PDF

References


Chen, X., Mamun, A., Alamo, R.G., 2015. Effect of Level of Crystallinity on Melt Memory Above the Equilibrium Melting Temperature in a Random Ethylene 1-Butene Copolymer. Macromolecular Chemistry and Physics 216, 1220–1226. https://doi.org/10.1002/macp.201500068

Echeverría, J.C., Estella, J., Barbería, V., Musgo, J., Garrido, J.J., 2010. Synthesis and characterization of ultramicroporous silica xerogels. Journal of Non-Crystalline Solids 356, 378–382. https://doi.org/10.1016/j.jnoncrysol.2009.11.044

Fadly, T.A., Fauziyah, N.A., Rosyidy, A., Mashuri, Pratapa, S., 2017. Degradation activation energy determination of PEG 4000-quartz composites using dynamic mechanical analyzer (DMA) measurements. AIP Conference Proceedings 1788, 030033. https://doi.org/10.1063/1.4968286

Fauziyah, N.A., Hilmi, A.R., Fadly, T.A., Asrori, M.Z., Mashuri, M., Pratapa, S., 2019. Dynamic tensile and shear storage moduli of PEG/silica-polymorph composites. Journal of Applied Polymer Science 136, 47372. https://doi.org/10.1002/app.47372

Girard, A., Stekiel, M., Spahr, D., Morgenroth, W., Wehinger, B., Milman, V., Nguyen-Thanh, T., Mirone, A., Minelli, A., Paolasini, L., Bosak, A., Winkler, B., 2018. Structural, elastic and vibrational properties of celestite, SrSO$less$sub$greater$4$less$/sub$greater$, from synchrotron x-ray diffraction, thermal diffuse scattering and Raman scattering. J. Phys.: Condens. Matter 31, 055703. https://doi.org/10.1088/1361-648X/aaf0ef

Guzel Kaya, G., Deveci, H., 2020. Synergistic effects of silica aerogels/xerogels on properties of polymer composites: A review. Journal of Industrial and Engineering Chemistry 89, 13–27. https://doi.org/10.1016/j.jiec.2020.05.019

Guzel Kaya, G., Yilmaz, E., Deveci, H., 2018. Sustainable nanocomposites of epoxy and silica xerogel synthesized from corn stalk ash: Enhanced thermal and acoustic insulation performance. Composites Part B: Engineering 150, 1–6.

https://doi.org/10.1016/j.compositesb.2018.05.039

Hilmi, A.R., Fauziyah, N.A., Apriliyana, G.A., Pratapa, S., 2019a. Dynamic mechanical analysis data of PEG/amorphous-silica composites. Data in Brief 23, 103731.

https://doi.org/10.1016/j.dib.2019.103731

Hilmi, A.R., Fauziyah, N.A., Pratapa, S., 2019b. A temperature-dependent storage modulus model for filler-dispersed PEG/silica composites. Composites Part B: Engineering 173, 106868. https://doi.org/10.1016/j.compositesb.2019.05.079

Hu, W., Li, M., Chen, W., Zhang, N., Li, B., Wang, M., Zhao, Z., 2016. Preparation of hydrophobic silica aerogel with kaolin dried at ambient pressure. Colloids and Surfaces A: Physicochemical and Engineering Aspects 501, 83–91. https://doi.org/10.1016/j.colsurfa.2016.04.059

Humbert, S., Lame, O., Séguéla, R., Vigier, G., 2011. A re-examination of the elastic modulus dependence on crystallinity in semi-crystalline polymers. Polymer 52, 4899–4909. https://doi.org/10.1016/j.polymer.2011.07.060

Kaneko, T., Nemoto, D., Horiguchi, A., Miyakawa, N., 2005. FTIR analysis of a-SiC: H films grown by plasma enhanced CVD. Journal of Crystal Growth 275, e1097–e1101.

Liu, Y., Zheng, J., Deng, Y., Wu, F., Wang, H., 2021. Effect of functional modification of porous medium on phase change behavior and heat storage characteristics of form-stable composite phase change materials: A critical review. Journal of Energy Storage 44, 103637. https://doi.org/10.1016/j.est.2021.103637

Ooi, C.Y., Hamdi, M., Ramesh, S., 2007. Properties of hydroxyapatite produced by annealing of bovine bone. Ceramics International 33, 1171–1177. https://doi.org/10.1016/j.ceramint.2006.04.001

Prokopowicz, M., Łukasiak, J., 2010. Synthesis and in vitro characterization of freeze-dried doxorubicin-loaded silica/PEG composite. Journal of Non-Crystalline Solids 356, 1711–1720. https://doi.org/10.1016/j.jnoncrysol.2010.06.024

Sudiana, I.N., Mitsudo, S., Nishiwaki, T., Susilowati, P.E., Lestari, L., Firihu, M.Z., Aripin, H., 2016. Synthesis and Characterization of Microwave Sintered Silica Xerogel Produced from Rice Husk Ash. J. Phys.: Conf. Ser. 739, 012059. https://doi.org/10.1088/1742-6596/739/1/012059

Triyastiti, L., Krisdiyanto, D., 2018. Isoalasi Nanokristal Selulosa Dari Pelepah Pohon Salak Sebagai Filler Pada Film Berbasis Polivinil Alkohol (PVA). INDONESIAN JOURNAL OF MATERIALS CHEMISTRY 1, 39–45.

Venkateswara Rao, A., Wagh, P.B., Haranath, D., Risbud, P.P., Kumbhare, S.D., 1999. Influence of temperature on the physical properties of TEOS silica xerogels. Ceramics International 25, 505–509. https://doi.org/10.1016/S0272-8842(97)00085-0

Zampori, L., Dotelli, G., Gallo Stampino, P., Cristiani, C., Zorzi, F., Finocchio, E., 2012. Thermal characterization of a montmorillonite, modified with polyethylene-glycols (PEG1500 and PEG4000), by in situ HT-XRD and FT IR: Formation of a high-temperature phase. Applied Clay Science 59–60, 140–147. https://doi.org/10.1016/j.clay.2012.02.015




DOI: https://doi.org/10.25077/jfu.11.3.327-333.2022

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Published by:

Departemen Fisika, FMIPA Universitas Andalas

Kampus Unand Limau Manis Padang Sumatera Barat 25163

Telepon 0751-73307

Email:jfu@sci.unand.ac.id