Penentuan Energi Keadaan Dasar Osilator Kuantum Anharmonik Menggunakan Metode Random Walk
DOI:
https://doi.org/10.25077/jfu.10.3.317-323.2021Abstract
Pada penelitian ini, energi keadaan dasar osilator kuantum anharmonik diperoleh menggunakan metode random walk. Suku anharmonik yang digunakan adalah lambda(x^3) dengan memvariasikan nilai lambda. Teori gangguan digunakan untuk memverifikasi hasil metode random walk. Energi keadaan dasar osilator kuantum anharmonik yang diperoleh menggunakan metode random walk memilki sesilih maksimum sebesar 4,107x10^-3 hw atau sekitar 0,8% dibandingkan dengan teori gangguan.References
Abdy, M., Ihsan, H., dan Dewi, D.A.R., 2021, ‘Solusi Persamaan Schrodinger dengan Menggunakan Metode Transformasi Differensial’, JMathCos, Vol. 4 No. 1 hal. 47-54.
Anderson, J.B., 2002. Diffusion and Gren’s Function Quantum Monte Carlo Methods. Jülich. John von Neuman Institute for computing. NIC Series, Vol. 10, ISBN 3-00-009057-6, pp. 25-50, 2002.
Asih, T.S.N., Waluya, S.B., Supriyono, 2018, ‘Perbandingan Finite Difference Method dan Finite Element Method dalam Mencari Solusi Persamaan Diferensial Parsial’, Prosiding Seminar Nasional Matematika 1, Semarang, hal. 885-888.
Beiser, A., 1999. Konsep Fisika Modern. Edisi Ke-4. Penerjemah: Liong, T. H. Jakarta. Erlangga.
Floyd, B.T., Ludes, A.M., Moua, C., Ostle, A.A., and Varkony, O.B., 2011, ‘Anharmonic Oscillator Potentials: Exact and Perturbation Result’, Journal of Undergraduate Research in Physics, MS134, pp. 1-11
Gapar, Arman, Y., dan Apriansyah, 2015, ‘Solusi Persamaan Laplace dengan Menggunakan Metode Random Walk’, Positron, Vol. V No. 2. Hal. 65-69
Godja, B.J., Ihwan, A., dan Apriansyah, 2016, ‘Penentuan Distribusi Suhu pada Permukaan Geometri Tak Tentu Menggunakan Metode Random Walk’, Positron, Vol. VI No. 1. Hal. 17-22.
Gould, H.; Tobochnik, J. and Christian, W., 2007, An Introduction to Computer Simulation Methods: Applications to Physical Systems, Third Edition, San Francisco. Pearson Education Inc., Addison-Wesley.
Hermanto, W. 2016, ‘Fungsi Gelombang Atom Deutrium dengan Pendekatan Persamaan Schrodinger’, Prosiding Seminar nasional Pendidikan Sains 2016, hal. 794-802.
Jafarpour, M. and Afshar, D., 2002, ‘Calculation of energy eigenvalues for the quantum anharmonic oscillator with a polynomial potential’, Journal of Physic A: Mathematical and General, 35 (2002), pp. 87–92.
Men, L.K., Setianto, Wibawa, B.M., 2017, ‘Energi Total Keadaan Dasar Atom Berilium dengan Teori Gangguan’, Jurnal Ilmu dan Inovasi Fisika, Vol. 01 No. 02, hal. 99-104.
Pandiangan, P., dan Arkundato, A., 2005, ‘Solusi Persamaan Schrodinger Osilator Harmonik dalam Ruang Momentum’, Jurnal Matematika, Sains, dan Teknologi, Vol. 6 No. 1, hal 20-30.
Sanubary, I., Arman, Y., & Azwar, A., 2012, ‘Penentuan Energi Osilator Kuantum Anharmonik Menggunakan Teori Gangguan’, Positron, Vol. II No. 2. Hal 1-5.
Supriyadi, Arkundato, A., Rofi’i, I., 2006, ‘Solusi Numerik Persamaan Schrodinger Atom Hidrogen dengan Metode Elemen Hingga (Finite Element Methods)’, Berkala MIPA, Vol. 16 No. 2. Hal 51-59.
Wahdah, N., Arman, Y., Lapanporo, B.P., 2016, ‘Penentuan Energi Keadaan Dasar Osilator Kuantum Anharmonik Menggunakan Metode Kuantum Difusi Monte Carlo’, Positron, Vol. VI No. 2, hal. 47-52.
Zen, N.A., Nuraini, R., 2020, ‘Tingkat Energi pada Osilator Anharmonik 1 Dimensi Menggunakan Metode Perturbasi Orde 2’, Jurnal Ilmu Fisika, Vol 12 No. 2, hal. 70-78.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Jurnal Fisika Unand
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Please find the rights and licenses in JFU (Jurnal Fisika Unand).
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution-NonCommercial 4.0 International License.
2. Authors Warranties
The author warrants that the article is original, written by stated author(s), has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User Rights
JFU's spirit is to disseminate articles published are as free as possible. Under the Creative Commons license, JFU permits users to copy, distribute, display, and perform the work for non-commercial purposes only. Users will also need to attribute authors and JFU on distributing works in the journal.
4. Rights of Authors
Authors retain the following rights:
- Copyright, and other proprietary rights relating to the article, such as patent rights,
- The right to use the substance of the article in future own works, including lectures and books,
- The right to reproduce the article for own purposes, provided the copies are not offered for sale,
- The right to self-archive the article.
5. Co-Authorship
If the article was jointly prepared by other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or JFU upon two months notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating partys notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of JFU.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by JFU or its sublicensee.
8. Miscellaneous
JFU will publish the article (or have it published) in the journal if the articles editorial process is successfully completed and JFU or its sublicensee has become obligated to have the article published. JFU may conform the article to a style of punctuation, spelling, capitalization, referencing and usage that it deems appropriate. The author acknowledges that the article may be published so that it will be publicly accessible and such access will be free of charge for the readers.