Rancang Bangun Alat Ukur Glukosa Untuk Darah Manusia Menggunakan Sensor Elektrokimia Berbasis Glassy Carbon Electrode (GCE) dengan Metode Voltametri
DOI:
https://doi.org/10.25077/jfu.10.3.324-329.2021Abstract
Sensor elektrokimia merupakan salah satu jenis sensor yang digunakan pada perancangan alat ukur glukosa untuk menentukan kadar glukosa pada darah manusia. Sensor elektrokimia dibuat dengan menggunakan sintesis kimia anorganik sehingga menghasilkan material sensor yang dapat merubah peristiwa kimia menjadi besaran listrik. Pada penelitian ini dilakukan analisis hasil uji respon beberapa jenis sensor modifikasi terhadap glukosa dalam darah dengan metode voltametri. Elektroda yang digunakan adalag Glassy Carbon Electrode (GCE) Data uji respon meliputi limit deteksi, linier range dan sensitivitas. Sensor glukosa memiliki karakter minimun dimana kualitas sensor akan semakin baik jika sensitivitas tinggi, limit deteksi rendah dan linier range yang lebar. Senyawa kimia yang digunakan meliputi Cu, Ni, dan Pt yang telah melalui proses sintesis untuk menjadi material sensor.References
Gao, H., Xiao, F., Ching, C. B., & Duan, H. (2011). One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzymatic amperometric glucose detection. ACS Applied Materials and Interfaces, 3(8), 3049–3057. doi: 10.1021/am200563f H
wang, D. W., Lee, S., Seo, M., & Chung, T. D. (2018). Recent advances in electrochemical nonenzymatic glucose sensors – A review. Analytica Chimica Acta, 1033, 1–34. doi: 10.1016/j.aca.2018.05.051
Isa, I. M., Dahlan, S. N. A., Hashim, N., Ahmad, M., & Ghani, S. A. (2012). Electrochemical sensor for cobalt(ii) by modified carbon paste electrode with zn/al-2(3-chlorophenoxy)propionate nanocomposite. International Journal of Electrochemical Science, 7(9), 7797–7808.
Nanda, F., Puryanti, D., & Muttaqin, A. (2017). Pengaruh Jenis Zeolit Terhadap Sensitivitas Sensor Non-Enzimatik untuk Mendeteksi Glukosa. Jurnal Fisika Unand, 6(4), 394–399. doi: 10.25077/jfu.6.4.394-399.2017
Ni, Y., Xu, J., Liang, Q., & Shao, S. (2017). Enzyme-free glucose sensor based on heteroatomenriched activated carbon (HAC) decorated with hedgehog-like NiO nanostructures. Sensors and Actuators, B: Chemical, 250, 491–498. doi: 10.1016/j.snb.2017.05.004
Shahhoseini, L., Mohammadi, R., Ghanbari, B., & Shahrokhian, S. (2019). Ni(II) 1D-coordination polymer/C 60 -modified glassy carbon electrode as a highly sensitive non-enzymatic glucose electrochemical sensor. Applied Surface Science, 478(November 2018), 361–372. doi: 10.1016/j.apsusc.2019.01.240
Shamsipur, M., Karimi, Z., Amouzadeh Tabrizi, M., & Rostamnia, S. (2017). Highly sensitive nonenzymatic electrochemical glucose sensor by afion/SBA-15-Cu (II) modified glassy carbon electrode. Journal of Electroanalytical Chemistry, 799(Ii), 406–412. doi: 10.1016/j.jelechem.2017.06.029
Wang, W., Zhang, L., Tong, S., Li, X., & Song, W. (2009). Three-dimensional network films of electrospun copper oxide nanofibers for glucose determination. Biosensors and Bioelectronics, 25(4), 708–714. doi: 10.1016/j.bios.2009.08.013
Zhang, L., Ni, Y., & Li, H. (2010). Addition of porous cuprous oxide to a Nafion film strongly improves the performance of a nonenzymatic glucose sensor. Microchimica Acta, 171(1), 103– 108. doi: 10.1007/s00604-010-0415-0
Zhang, X., Liao, Q., Liu, S., Xu, W., Liu, Y., & Zhang, Y. (2015). CuNiO nanoparticles assembled on graphene as an effective platform for enzyme-free glucose sensing. Analytica Chimica Acta, 858(1), 49–54. doi: 10.1016/j.aca.2014.12.007
Zhang, Yuchan, Su, L., Manuzzi, D., de los Monteros, H. V. E., Jia, W., Huo, D., Hou, C., & Lei, Y. (2012). Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires. Biosensors and Bioelectronics, 31(1), 426–432. doi: 10.1016/j.bios.2011.11.006
Zhang, Yue, Xu, F., Sun, Y., Shi, Y., Wen, Z., & Li, Z. (2011). Assembly of Ni(OH)2 nanoplates on reduced graphene oxide: A two dimensional nanocomposite for enzyme-free glucose sensing. Journal of Materials Chemistry, 21(42), 16949–16954. doi: 10.1039/c1jm11641j
Zhao, Y., He, Z., & Yan, Z. (2013). Copper@carbon coaxial nanowires synthesized by hydrothermal carbonization process from electroplating wastewater and their use as an enzyme-free glucose sensor. Analyst, 138(2), 559–568. doi: 10.1039/c2an36446h
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Jurnal Fisika Unand
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Please find the rights and licenses in JFU (Jurnal Fisika Unand).
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution-NonCommercial 4.0 International License.
2. Authors Warranties
The author warrants that the article is original, written by stated author(s), has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User Rights
JFU's spirit is to disseminate articles published are as free as possible. Under the Creative Commons license, JFU permits users to copy, distribute, display, and perform the work for non-commercial purposes only. Users will also need to attribute authors and JFU on distributing works in the journal.
4. Rights of Authors
Authors retain the following rights:
- Copyright, and other proprietary rights relating to the article, such as patent rights,
- The right to use the substance of the article in future own works, including lectures and books,
- The right to reproduce the article for own purposes, provided the copies are not offered for sale,
- The right to self-archive the article.
5. Co-Authorship
If the article was jointly prepared by other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or JFU upon two months notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating partys notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of JFU.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by JFU or its sublicensee.
8. Miscellaneous
JFU will publish the article (or have it published) in the journal if the articles editorial process is successfully completed and JFU or its sublicensee has become obligated to have the article published. JFU may conform the article to a style of punctuation, spelling, capitalization, referencing and usage that it deems appropriate. The author acknowledges that the article may be published so that it will be publicly accessible and such access will be free of charge for the readers.