Karakterisasi Keramik (Mg0,8Zn0,2)TiO3+4wt% Bi2O3 sebagai Material Dielectric Resonator Oscillator, Struktur, Mikrostruktur dan Densitasnya
DOI:
https://doi.org/10.25077/jfu.10.2.239-247.2021Abstract
Penelitian ini bertujuan untuk mengkaji potensi aplikasi keramik (Mg0,8Zn0,2)TiO3+4wt% Bi2O3 (disingkat MZT02+4wt%Bi2O3) sebagai resonator pada rangkaian dielectric resonator oscillator (DRO) yang bekerja pada daerah frekuensi gelombang mikro, serta menguji struktur, mikrostruktur dan densitas bulk keramik. Fabrikasi keramik dilakukan dengan ball-milling antara serbuk kristalin MZT02 dengan 4wt% serbuk Bi2O3 pada kecepatan 500 rpm selama 5 jam. Serbuk hasil milling dikompaksi dengan hydraulic-hand press dan cylindrical die press untuk menghasilkan pelet. Semua pelet disinter pada suhu 1100°C selama 4, 6 dan 8 jam untuk menjadi keramik. Struktur keramik dengan waktu penahanan 4 dan 6 jam mengandung fasa MgTiO3=(97,87±8,24) %molar, sisanya fasa TiO2 rutil. Keramik dengan penahanan 8 jam mengandung fasa MgTiO3=(98,44±2,07) %molar, MgTi2O5=(1,49±0,30) %molar dan sisanya TiO2 rutil. Bertambahnya waktu tahan sinter relatif tidak menyebabkan perubahan ukuran parameter kisi, volume sel satuan sedikit berkurang dan densitas bulk juga berkurang dari 2,792, 2,776 menjadi 2,745 g/cm3. Mikrostruktur ketiga keramik berupa gumpalan butir dengan ukuran rata-rata 0,3-1,2 μm disertai pori-pori. Karakterisasi DRO merekam frekuensi resonansi pada posisi yang sama untuk ketiga keramik, yaitu 5,12 GHz memberi bukti bahwa keramik uji dapat diaplikasikan sebagai resonator DRO pada frekuensi gelombang mikro dan variasi waktu tahan sinter tidak merubah performa tersebut.
Â
This study aims to examine the potential application of (Mg0.8Zn0.2)TiO3+ 4wt% Bi2O3 (abbreviated: MZT02+4wt% Bi2O3) ceramics as a resonator in a dielectric resonator oscillator (DRO) circuit operating in microwave frequencies and to examine its structure, microstructure and bulk density. Ceramic fabrication was carried out by ball-milling between MZT02 crystalline powder and 4wt% Bi2O3 powder at 500 rpm for 5 h. The milled powder was compacted using a hydraulic-hand press and a cylindrical die press to produce pellets. All pellets were sintered at 1100°C for 4, 6 and 8 h to become ceramics. The ceramic structure with 4 and 6 h holding time contains MgTiO3 phase = (97.87 ± 8.24)% molar, the rest was TiO2 rutile phase. Ceramic with 8 h contained MgTiO3phase = (98.44 ± 2.07)% molar, MgTi2O5 = (1.49 ± 0.30) molar% and the remaining TiO2 rutile. Increasing the sinter holding time relatively did not change in the lattice parameter sizes, the unit cell volume was slightly reduced and the bulk density was also reduced from 2.792, 2.776 to 2.745 g/cm3. Microstructure of the three ceramics contain groups of grains with an average size of 0.3-1.2 μm along with pores. DRO characterization recorded the resonant frequency at the same position for the three ceramics, namely 5.12 GHz, providing evidence that the ceramics can be applied as a DRO resonator at microwave frequencies and the variation in sinter holding time did not change this performance
References
Adikaning, Sefrilita. & Suasmoro, S. 2016, ‘Mg0,8Zn0,2TiO3 Ceramics Synthesize as Dielectric Material by Attritor Mill Mixing Methods’.
Anugraha, V. G., & Widyastuti., 2014, ‘Pengaruh Komposisi Sn dan Variasi Tekanan Kompaksi terhadap Densitas dan Kekerasan Komposit Cu-Sn untuk Aplikasi Proyektil Peluru Frangible dengan Metode Metalurgi Serbuk’, Jurnal Teknik POMITS, Vol. 3(1), ISSN: 2337-3539.
Chiu, T., 2003, ‘Dielectric constant measurement technique for a dielectric strip using a rectangular waveguide’, IEEE Transactions on Instrumentation and Measurement, 52(5), pp. 1501–1508. doi: 10.1109/TIM.2003.817904.
Ermawati, F.U., Y. Wahyu, T. Kristiantoro dan Dedi, 2020a, ‘Blok Diagram Sirkuit DRO dan Blok Diagram Pengukuran Frekuensi Respon dan Daya Luaran DRO Pada C-Band untuk Keramik Dielektrik (Mg1-xZnx)TiO3’, Sertifikat Hak Cipta Republik Indonesia, No. Pencatatan 000203671, 2020.
Ermawati, F.U., Y. Wahyu, T. Kristiantoro dan Dedi, 2020b, ‘Metode Fabrikasi Keramik Dielektrik (Mg1-xZnx)TiO3 sebagai Dielektrik Resonator Osilator yang bekerja pada Pita C’, Paten Indonesia, No. Permohonan P00202006498, 04 Sept. 2020.
Ermawati, F.U., 2020c, ‘The Response of (Mg0,6Zn0,4)TiO3 Ceramic System as A Dielectric Resonator Oscillator at C-Band’, Makalah: Seminar Nasional Fisika 2020, 17 Okt. 2020.
Ermawati, F.U., Pratapa, S., Suasmoro, S., Hübert, T., & Banach, U., 2016, ‘Preparation and structural study of Mg1-xZnxTiO3 ceramics and their dielectric properties from 1 Hz to 7.7 GHz. Journal of Materials Science: Materials in Electronics, 27(7), 6637-6645. https://doi.org/10.1007/s10854-016- 4610-6.
Ermawati, F. U., 2018, ‘Difraksi Sinar X: Teori dan Analisis Data Eksperimen’, Surabaya: Unipress UNESA Surabaya, Sertifikat Hak Cipta Republik Indonesia, No.Pencatatan 000139628 Thn 2019
Huang, J. B., Yang, B., Yu, C. Y., Zhang, G. F., Xue, H., Xiong, Z. X., Viola, G., Donnan, R., Yan, H. X., & Reece, M. J., 2015, ‘Microwave and terahertz dielectric properties of MgTiO3–CaTiO3 ceramics’, Materials Letters, Vol. 138, 1 January 2015, pp. 225–227.
https://doi.org/https://doi.org/10.1016/j.matlet.09.122.
Johan, A., & J. dan Ramlan, 2008, ‘Karakterisasi Konduktivitas, Porositas dan Densitas Bahan Keramik Na-β"-Al2O3 dari Komposisi Na2O 13% dan Al2O3 87% dengan Variasi Waktu Penahanan’, Jurnal Penelitian Sains, Vol. 11, No. 3, pp. 544–511.
Kang, H., Wang, L., Xue, D., Li, K., & Liu, C., 2008, ‘Synthesis of Tetragonal Flake-like Magnesium Titanate Nanocrystallites’, Journal of Alloys and Compounds, Vol. 460(1–2), pp. 160–163. https://doi.org/10.1016/j.jallcom.2007.06.054.
Kim, J., Choi, E., Ryu, K., Bae, S., & Lee, Y., 2009, ‘Microwave dielectric properties of Mg4Ta2O9 ceramics with TiO2 additions for dielectric resonator oscillator’, Vol. 162, pp. 87–91. https://doi.org/10.1016/j.mseb.2009.03.025.
Moulson, A. J., & Hebert, J. M., 2003, ‘Electrocramics: Materials, Properties, Applications’, 2nd Ed. Chichester John Wiley & Sons, Ltd: ISBN 0471497479.
Rettiningtyas, N., & Ermawati, F.U., 2020, ‘Sintesis dan Fabrikasi Keramik (Mg0,8Zn0,2)TiO3+2 wt% Bi2O3 Sebagai Bahan Dielektrik Serta Karakterisasi Struktur dan Densitasnya Akibat Variasi Waktu Tahan Sinter’, Jurnal Inovasi Fisika Indonesia (IFI), Vol.9, No. 02, hal 25-33.
Sánchez, L., Lechago, S., & Sanchis, P., 2015, ‘Ultra-compact TE and TM pass polarizers based on vanadium dioxide on silicon’, Vol. 40, No. 7, pp. 1452-1455.
Sharon Samyuktha, V., A. Guru Sampath Kumar, T. Subba Rao, and R. Padma Suvarna, 2016, ‘Synthesis, Structural and Dielectric Properties of Magnesium Calcium Titanate (1-x)MgTiO3-x CaTiO3 (x= 0, 0.1, 0.2 and 0.3)’, Materials Today: Proceedings 3 (6):1768-71.
Sheen, J., 2008, ‘A dielectric resonator method of measuring dielectric properties of low loss materials in the microwave region’, Measurement Science and Technology, 19(5). doi: 10.1088/0957-0233/19/5/055701.
Skyworks., 2017, ‘Properties, Test Methods, and Mounting of Dielectric Resonators’, https://cm-sitecore.skyworksinc.com/-/media/SkyWorks/Documents/Products/2501-2600/Properties_and_Mounting_of_Dielectric_Resonators_202803B.pdf. Retrieved February 11, 2020.
Surendran, K. P., Wu, A., Vilarinho, P. M., & Ferreira, V. M., 2008, ‘Sol-Gel Synthesis of Low-Loss MgTiO3 Thin Films by a Non-Methoxyethanol Route’, Vol. 10, pp. 4260-4267. https://en.m.wikipedia.org/wiki/Transverse_mode.
Wu, H.T, Jiang, Y.S, Cui, Y.J., Zhang, X.H., Jia, X., Yue,Y.L., 2013, ‘Improvements in the sintering behaviour and microwave dielectric properties of geikelite-type MgTiO3 ceramics’, Journal of Electronic Materials, Vol. 42, No. 3. doi:10.1007/s11664- 012-2349-2.
Xue, X., Yu, H., Xu. G., 2013, ‘Phase composition and microwave dielectric properties of Mg-excess MgTiO3 ceramics’, J. Mater, Vol. 24, pp. 1287-1291. doi: 10.1007/s10854-012-0921-4.s.
Yang, Y., Huang, Y., Member, S., & Chen, Q., 2007, ‘Comparison of Q -Factors Between TE and TM Modes in 3-D Microsquares by FDTD Simulation’, Vol. 19, No. 22, pp. 1831-1833.
Zhang, J., Zhenxing Y., Yu L. and Longtu L., 2018, ‘MgTiO3/TiO2/MgTiO3: An ultrahigh-Q and temperature-stable microwave dielectric ceramic through cofired trilayer architecture’, Ceramics International, 44(17), pp. 21000–21003. doi: 10.1016/j.ceramint.2018.08.135.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Jurnal Fisika Unand
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Please find the rights and licenses in JFU (Jurnal Fisika Unand).
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution-NonCommercial 4.0 International License.
2. Authors Warranties
The author warrants that the article is original, written by stated author(s), has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User Rights
JFU's spirit is to disseminate articles published are as free as possible. Under the Creative Commons license, JFU permits users to copy, distribute, display, and perform the work for non-commercial purposes only. Users will also need to attribute authors and JFU on distributing works in the journal.
4. Rights of Authors
Authors retain the following rights:
- Copyright, and other proprietary rights relating to the article, such as patent rights,
- The right to use the substance of the article in future own works, including lectures and books,
- The right to reproduce the article for own purposes, provided the copies are not offered for sale,
- The right to self-archive the article.
5. Co-Authorship
If the article was jointly prepared by other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or JFU upon two months notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating partys notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of JFU.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by JFU or its sublicensee.
8. Miscellaneous
JFU will publish the article (or have it published) in the journal if the articles editorial process is successfully completed and JFU or its sublicensee has become obligated to have the article published. JFU may conform the article to a style of punctuation, spelling, capitalization, referencing and usage that it deems appropriate. The author acknowledges that the article may be published so that it will be publicly accessible and such access will be free of charge for the readers.