Analisis Ukuran Teras dan Rasio H/D pada Molten Salt Fast Reactor dalam Tinjauan Neutronik

Authors

  • Puti Berkah Azurah Laboratorium Fisika Nuklir, Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Andalas
  • Dian Fitriyani Laboratorium Fisika Nuklir, Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Andalas
  • Sidik Permana Jurusan Fisika, Institut Teknologi Bandung

DOI:

https://doi.org/10.25077/jfu.10.1.34-40.2021

Abstract

Telah dilakukan simulasi pada Molten Salt Fast Reactor (MSFR) berdaya 100 MWth untuk menganalisis pengaruh bentuk dan ukuran teras terhadap kinerja neutronik. Penelitian ini menggunakan kode komputasi SRAC (Standard Thermal Reactor Analysis Code System) yang dikembangkan oleh JAEA (Japan Atomic Energy Agency). Analisis dilakukan terhadap 9 variasi bentuk dan ukuran teras pada teras MSFR silinder dua dimensi (2-D) dengan peninjauan terhadap parameter neutronik yaitu faktor multiplikasi efektif,. Perhitungan neutronik dilakukan dengan mengatur komposisi bahan bakar dalam teras. Hasil perhitungan menunjukkan bahwa seluruh variasi model teras menghasilkan nilai faktor multiplikasi efektif di atas 1,0 pada awal masa operasi reaktor. Model teras C1 (volume teras 6 m3, bentuk teras tall) merupakan model teras yang paling baik dalam mempertahankan kekritisan reaktor dengan reactivity swing sebesar 0,0721.

 

A simulation of 100 MWth Molten Salt Fast Reactor (MSFR) has been carried out to analyze the influence of core shape and size to its neutronic performance. This research used computational code SRAC (Standard Thermal Reactor Analysis Code System) developed by JAEA (Japan Atomic Energy Agency). Analysis has been done to 9 variation of core shape and size on two-dimensional (2-D) cylinder of  MSFR in terms of neutronic parameter such as the effective multiplication factor with arrangement of fuel composition. The neutronic calculation shows that all of core type bring out the value of effective multiplication factor above 1,0  in the beginning of reactor operation. C1 is the most optimum core model because it can maintain the criticality of the core reactor with reactivity swing value of 0,0721.

References

Allibert, M., Aufiero, M., Brovchenko, M., Delpech, S., Ghetta, V., Heuer, D., Laureau, A., Merle-Lucotte, E., 2016, Handbook of Generation IV Nuclear Reactors, Elsevier, hal.157-188.

Bell, G. I., Glasstone, S., 1970, Nuclear Reactor Theory, Van Nostrand Reinhold Company, New York.

Degtyarev, A., Myasnikov, A., Ponomarev, L., 2015, Molten Salt Fast Reactor with U-Pu Cycle, Progress in Nuclear Energy, Vol.82, Elsevier, hal. 33-36.

Duderstadt, J.J. dan Hamilton, L.J., 1976, Nuclear Reactor Analysis, John Wiley & Sons, Inc., Kanada.

Ho, M., Obbard, E., Burr, P. A., Yeoh, G., 2019, A Review On The Development of Nuclear Power Reactor, Energy Procedia, Vol.160, Elsevier, hal. 459–466.

Hu, T., Cao, L., Wu, H., Du, X., He, M., 2017, Coupled neutronics and thermal-hydraulics simulation of molten salt reactors based on OpenMC/TANSY, Annals of Nuclear Energy, Vol. 109, Elsevier, hal. 260-276.

Locatelli, G., Mancini, M., Todeschini, N., 2013, Generation IV Nuclear Reactors : Current status and future prospects, Elsevier, hal. 1503-1520.

Merle-Lucotte, E., Heuer, D., Allibert, M., Brovchenko, M., Ghetta, V., Rubiolo, P., Laureau, A., 2013, Recommendations For a Demonstrator of Molten Salt Fast Reactor, Proceedings of International Conference on Fast Reactor and Related Fuel Cycle: Safe Technologies and Sustainable Scenarios (FR13), Paris.

Okumura, K., Kugo, T., Kaneko, K., Tsuchihashi, K., 2007, SRAC2006 : A Comprehensive Neutronic Calculation Code System, Japan Atomic Energy Agency, Japan.

Perkasa, D., 2018, Analisis Neutronik Molten Salt Fast Reactor, Skripsi, Institut Teknologi Bandung, Bandung.

Permana, S., 2020, Basic design parameter optimization on water cooled thorium breeder reactor, Annals of Nuclear Energy, Vol.139, Elsevier, hal. 1-8.

Pioro, I. L., 2016, Introduction : Generation IV International Forum from Handbook of Generation IV Nuclear Reactors, Woodhead Publishing Series in Energy, hal.37-54.

Rouch, H., Geoffroy, O., Rubiolo, P., Laureau, A., Brovchenko, M., Heuer, D., Merle-lucotte, E., 2014, Preliminary thermal – hydraulic core design of the Molten Salt Fast Reactor ( MSFR ), Annals of Nuclear Energy, Vol.64, Elsevier, hal. 449–456.

Siemer, D. D., 2015, Why the molten salt fast reactor ( MSFR ) is the “ best †Gen IV reactor, Energy Science and Engineering, Vol.4, the Society of Chemical Industry and John Wiley & Sons Ltd., hal. 83–97.

Wallenius, J., 2020, Anomalous reactivity swing in the 238U-233U system, Annals of Nuclear Energy, Vol.139, Elsevier, hal.1-6.

Downloads

Published

2021-02-17

How to Cite

Azurah, P. B., Fitriyani, D., & Permana, S. (2021). Analisis Ukuran Teras dan Rasio H/D pada Molten Salt Fast Reactor dalam Tinjauan Neutronik. Jurnal Fisika Unand, 10(1), 34–40. https://doi.org/10.25077/jfu.10.1.34-40.2021

Issue

Section

Articles