Karakterisasi Sensor Liquefied Petroleum Gas (LPG) dari Bahan SnO2 Didoping dengan Al2O3
DOI:
https://doi.org/10.25077/jfu.9.4.531-537.2020Abstract
Karakterisasi terhadap sensor gas LPG dari bahan SnO2 didoping dengan Al2O3 telah dilakukan. Sampel dibuat dengan persentase doping 0%, 2%, 4%, 6%, 8% dan 10% mol terhadap bahan dasar SnO2. Sensor gas LPG diuji pada temperatur ruang untuk mendapatkan karakteristik I-V, nilai sensitivitas, selektivitas, konduktivitas, waktu respon dan karakterisasi XRD. Berdasarkan pengukuran karakteristik I-V, sensitivitas tertinggi pada sampel 92% mol SnO2 + 8 % mol Al2O3 yaitu 4,33 pada tegangan 12 volt. Nilai selektivitas tertinggi terdapat pada sampel 92% mol SnO2 + 8 % mol Al2O3 yaitu 2,67 pada tegangan 6 volt. Nilai konduktivitas tertinggi dimiliki sampel 92% mol SnO2 + 8 % mol Al2O3 yaitu 12,06 x 10-4/Ω.m pada lingkungan LPG. Waktu respon sampel 92% mol SnO2 + 8 % mol Al2O3 yaitu 45 s pada tegangan 24 volt. Hasil XRD menunjukkan ukuran kristal 92% mol SnO2 + 8 % mol Al2O3 yaitu 43,67 nm lebih kecil dibandingkan dengan 100% SnO2 yaitu 57,74 nm.
Â
Characterization of LPG gas sensors made from material SnO2 doped with Al2O3 was performed. Samples were made with doped Percentages of 0%, 2%, 4%, 6%, 8% and 10% mol of the basic ingredient SnO2. LPG gas sensors was tested at room temperature by measuring I-V’s characteristics, calculating values of sensitivity, selectivity, conductivity, response time and XRD characterization. Based on the measurement of I-V characteristics, the highest sensitivity of the sample 92% mol SnO2 + 8% mol Al2O3 is 4.33 at a voltage of 12 volts. The highest selectivity value of the sample 92% mol SnO2 + 8% mol Al2O3 is 2.67 at a voltage of 6 volts. The highest conductivity value was given a sample of 92% mol SnO2 + 8% mol Al2O3 is 12.06 x 10-4 / Ω.m in the LPG environment. The sample’s response time is 92% mol SnO2 + 8% mol Al2O3, which is 45 s at a voltage of 12 volts. The XRD results that the crystallite size of 92% mol SnO2 + 8% mol Al2O3 is 43.67 nm smaller than 100% SnO2 is 57.74 nm.
References
Basthoh, E.,Elvaswer, dan Harmadi., “Karakterisasi ZnO Didoping TiO2 untuk Detektor LPGâ€, Jurnal Ilmu Fisika, 5(1), 11-15, (2013).
Bautista, J.M., Maldonado, A., dan Olvera, M.L., “Gas Sensing Performance of TiO2-Al2O3 Pelletsâ€, International Conference on Electrical Engineering, 1(978), (2015).
Feng, L.D., Huang, X.J., dan Choi, Y.K., “Dynamic Determination of Domestic Liquefied Petroleum Gas Down to Several ppm Levels Using a Sr-doped SnO2 Thick Film Gas Sensorâ€, Microchimica Acta, 156, 245-251, (2007).
Hendri, “Karakterisasi TiO2 (CuO) dengan Metoda Keadaan Padat (Solid State Reaction) sebagai Sensor Gas CO2â€, Jurnal Ilmu Fisika (JIF), 1(1), 25-29, (2012).
Li, J., Pan, Y., Xiang, C., Ge, Q., dan Guo, J., “Low Temperature Synthesis of Ultrafine α-Al2O3 Powder by a Simple Aqueous Sol-Gel Processâ€, Ceramics International, 32, 587-591, (2005).
Mondal, B., Basumatari, B., Das, J., Roychaudhury, C., Saha, H. dan Mukherjee, N., “ZnO-SnO2 based Composite Type Gas Sensor for Selective Hydrogensensingâ€, Sensor and Actuators B, 194, 389-396, (2014).
Patil, A., Dighavkar, C., dan Borse, R., “Al Doped ZnO Thick Films as CO2 Gas Sensorsâ€, Journal of Optoelectronics and Advanced Materials, 13(10), 1331-1337, (2011).
Shaposhnik, D., Pavelko, R., Liobert, E., Gisbert, G. F. dan Vilanova, X., “Hydrogen Sensors on The Basis of SnO2-TiO2 Systemâ€, Sensors and Actuators B, 25, 527-534, (2012).
Shukla, T. dan Omanwar, S.K., “Solid State Tin Oxide Based Gas Sensor for Liquefied Petroleum Gas Detection at Room Temperatureâ€, SSRG International Journal of Medical Science, 1, 18-21, (2014).
Yadav, B. C., Yadav, A., Shukla, T. dan Singh, S., “Solid State Titania-based Gas Sensor for Liquefied Petroeum Gas Detection at Room Temperatureâ€, Bull. Mater. Sci, 34(7), 1639-1644, (2011).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Jurnal Fisika Unand
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Please find the rights and licenses in JFU (Jurnal Fisika Unand).
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution-NonCommercial 4.0 International License.
2. Authors Warranties
The author warrants that the article is original, written by stated author(s), has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User Rights
JFU's spirit is to disseminate articles published are as free as possible. Under the Creative Commons license, JFU permits users to copy, distribute, display, and perform the work for non-commercial purposes only. Users will also need to attribute authors and JFU on distributing works in the journal.
4. Rights of Authors
Authors retain the following rights:
- Copyright, and other proprietary rights relating to the article, such as patent rights,
- The right to use the substance of the article in future own works, including lectures and books,
- The right to reproduce the article for own purposes, provided the copies are not offered for sale,
- The right to self-archive the article.
5. Co-Authorship
If the article was jointly prepared by other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or JFU upon two months notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating partys notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of JFU.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by JFU or its sublicensee.
8. Miscellaneous
JFU will publish the article (or have it published) in the journal if the articles editorial process is successfully completed and JFU or its sublicensee has become obligated to have the article published. JFU may conform the article to a style of punctuation, spelling, capitalization, referencing and usage that it deems appropriate. The author acknowledges that the article may be published so that it will be publicly accessible and such access will be free of charge for the readers.