Pembuatan Karbon Aktif dari Tandan Kosong Kelapa Sawit sebagai Elektroda Superkapasitor

Authors

  • Amelina Dwika Hardi Laboratorium Kimia Fisika, Jurusan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Andalas
  • Rahma Joni Laboratorium Kimia Fisika, Jurusan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Andalas
  • Syukri Syukri Laboratorium Kimia Fisika, Jurusan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Andalas
  • Hermansyah Aziz Laboratorium Kimia Fisika, Jurusan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Andalas

DOI:

https://doi.org/10.25077/jfu.9.4.479-486.2020

Abstract

Pembuatan karbon aktif dari Tandan Kosong Kelapa Sawit (TKS) sebagai elektroda superkapasitor sudah diteliti. Karbon aktif dibuat dari proses karbonisasi dan aktivasi menggunakan Kalium Hidroksida (KOH). Karbon aktif TKS dikarbonisasi melalui pembakaran sampel pada suhu 400°C dan diaktivasi dengan KOH pada suhu 800°C dalam lingkungan gas nitrogen. Karbon aktif TKS dikarakterisasi menggunakan Energi Dispersive X-Ray (EDX),  X-Ray Difraction (XRD), Scanning Electron Miscroscopy (SEM), Surface Area Analyzer (SAA).  Komposisi unsur karbon yang dihasilkan dari karbon aktif TKS adalah sebesar 88,93 %wt.  Struktur kristalit dari  karbon aktif TKS menunjukkan struktur amorf pada sudut 2θ 26,20° dan 43,08°. Hasil analisis SAA dengan metode Brunauer-Emmet-Teller (BET) didapatkan luas permukaan karbon aktif TKS sebesar 898,229 m2/g. Pengukuran sifat listrik karbon Aktif TKS sebagai elektroda superkapasitor menggunakan larutan elktrolit H2SO4 1M dengan metoda Cyclic Voltametry (CV) didapatkan nilai kapasitansi spesifik sebesar 107,83 F/g.

 

Preparation of activated carbon from Oil Palm Empty Fruit Bunch (TKS) as a supercapacitor electrode has been investigated. Activated carbon is made from carbonization and activation processes using Potassium Hydroxide (KOH). Activated carbon TKS is carbonized by burning the sample at 400°C and activated with KOH at 800°C in a nitrogen gas environment. Activated carbon TKS was characterized using Energi Dispersive X-Ray (EDX), X-Ray Difraction (XRD), Scanning Electron Miscroscopy (SEM), Surface Area Analyzer (SAA). The composition of the element carbon produced from activated carbon TKS is 88.93% wt. The crystallite structure of TKS activated carbon shows an amorphous structure at an angle of 2θ 26,20° and 43,08°. The results of the SAA analysis by the Brunauer-Emmet-Teller (BET) method showed that the surface area of the TKS activated carbon was 898.229 m2/g. Measurement of electrical properties of activated carbon TKS as a supercapacitor electrode using a 1M H2SO4 electrolyte solution with the Cyclic Voltametry (CV) method obtained specific capacitance values of 107.83 F /g.

References

Abioye, A. M., dan Ani, F. N., 2015, ‘Recent development in the production of activated carbon electrodes from agricultural waste biomass for supercapacitors: A review’, Renewable and Sustainable Energy Reviews vol.52, pp.1282–1293

Agustino, Awitdrus, Farma, R., Taer, E., 2020, ‘Pembuatan dan Karakterisasi Elektroda Karbon Aktif dari Serat Daun Nanas untuk Aplikasi Superkapasitor’, Journal Aceh Physic Sociaty, vol 9, no.1, pp.1-8

Aziz, H., Tetra, O., N., Syukri, Alif, A., Ramadhan, W.,2018, ‘Utilization of porous carbon from waste palm kernel shells on carbon paper as a supercapacitors electrode material’. IOP Conf. Series: Earth and Environmental Science 65, 012053

Aziz, H., Tetra, O.N., Syukri, Alif A., Ramadhan, W., 2017, ‘Utilization of porous carbon from waste palm kernel shells on carbon paper as a supercapacitors electrode material’, Earth and Environmental Science vol.65, pp. 1-7

De Lange, M. F. et al. (2014) ‘Adsorptive characterization of porous solids: Error analysis guides the way’, Microporous and Mesoporous Materials vol.200, pp.199–215

Febriyanto, P., Jerry, Satria, A., W., Devianto, H., 2019 ‘Pembuatan Dan Karakterisasi Karbon Aktif Berbahan Baku Limbah Kulit Durian Sebagai Elektroda Superkapasitor’, Jurnal Integrasi Proses, vol. 8, no.1, pp.19 – 24

Frackowiak, E., Abbas, Q., B´eguin, F., 2013, ‘Carbon/carbon supercapacitors, Journal of Energy Chemistry, vol. 22, pp.226–240

Gong, Y., Li, D., Fu, Q., Pan, C., 2015, Influence of graphene microstructures on electrochemical performance for supercapacitors, Progress in Natural Science: Materials International vol.25, no.5, pp. 379-385

González-García, P., 2017, ‘Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications’, Renewable and Sustainable Energy Reviews, vol.82, pp.1393-1414

Hidayu, A.R., Mohamad, N.F., Matali, S., Sharifah, A.S.A.K., 2013,’Characterization of activated carbon prepared from oil palm empty fruit bunch using BET and FT-IR techniques’, Procedia Engineering vol.68, pp.379-384

Lee, H.M., An, K, Soo-Jin Park, S., Kim, B., 2019 ‘Mesopore-rich activated carbons for electrical double-layer capacitors by optimal activation condition’, Nanomaterials vol.9, no.4

Misnon, I.I., Khairiyyah, N., Radhiyah, M.Z., Baiju, A.A., Jose, V.R., 2015, ‘Electrochemical properties of carbon from oil palm kernel shell for high performance supercapacitors’, Electrochimica Acta, vol.174 no.1, pp.78-86

Mossfika, E., Syukri, Aziz, H., 2020, ‘Preparation of Activated Carbon from Tea Waste by NaOH Activation as A Supercapacitor Material’ , Journal Aceh Physic Sociaty, vol.9, no.2, pp. 42-47

N. Richana, N., Winarti, C., Hidayat, T., Prastowo, B., 2015, ‘Hydrolysis of Empty Fruit Bunches of Palm Oil (Elaeis Guineensis Jacq.) by Chemical, Physical, and Enzymatic Methods for Bioethanol Production’, International Journal of Chemical Engineering and Applications, vol. 6, No. 6, pp.422-426

Pagketananga, T., Artnaseawa, A., Wongwichaa, P., Thabuota, M., 2015, ‘Microporous Activated Carbon from KOH-Activation of Rubber Seed-Shells for Application in Capacitor Electrode’, Energy Procedia vol.79, pp.651 – 656

Perdana, Y.A., Joni, R., Emriadi, Aziz, H., 2020, ‘Pengaruh Aktivator KOH terhadap kinerja karbon aktif dari cangkang kelapa sawit sebagai elektroda superkapasitor’, Journal Aceh Physic Sociaty, vol 9, no 1, pp.13-19

Rawal, S., Joshi, B., dan Kumar, Y., 2018 ‘Synthesis and characterization of activated carbon from the biomass of Saccharum bengalense for electrochemical supercapacitors’, Journal of Energy Storage. Elsevier vol.20, pp.418–426

Sharma, P., Kumar, V.,2018, ‘A Brief Review on Supercapacitor’, Pramana Reaserch Journal, vol..8, no.3, pp.50-55

Taer, E., Afrianda, A., Taslim, R., Krisman, Minarni, Agustino, A., Apriwandi, A., Malik, U., 2018, ‘The physical and electrochemical properties of activated carbon electrode made from Terminalia Catappa leaf (TCL) for supercapacitor cell application’. IOP Conf. Series: Journal of Physics: Conf. Series 1120: 012007

Taer, E., Dewi, P., Sugianto, R., Syech, R., Taslim, Salomo, Purnama, Apriwandi, Agustino, Setiadi, 2018 ‘The Syinthesis of Carbon Electrode Supercapacitor From Durian Shell Based on variations in the Activation Time’, In The 1st International Conference and Exhibition on Powder Technology Indonesia (ICePTi), AIP Conference Proceeding 1927, 030026

Taer, E., Taslim, R., Aini, Z., Hartati, S.D., Mustika, W.S., 2017, ‘Activated carbon electrode from banana-peel waste for supercapacitor applications’, AIP Conference Proceedings, 1801: 040004

Taer, E., Mustika, W., S., Taslim, R., 2016, ‘Pengaruh suhu aktivasi CO2 terhadap kapasitansi spesifik elektroda karbon superkapasitor dari tandan kosong kelapa sawit, Prosiding Seminar Nasional Fisika (E-Journal) SNF2016, Vol. 5

Tagreed, M.A.S., dan Mustafa, A., K., J., 2015, ‘Preparation and Characterization of Graphene / PMMA Composite’, Chemical Engineering vol., no.10, pp.902–909

Tetra, O., N., Aziz, H., Emriadi, Wahyuni, H., Alif, A., 2016 ‘Performance of TiO2-Carbon on Ceramic Template with Sodium Hydroxide Activation as Supercapacitor Electrode Materials’, Der Pharma Chemica, Vol.8, pp.26-30

Wen, L., Li, F., and Cheng, H.-M. 2016. Review: Carbon Nanotubes and Graphene for Flexible Electrochemical Energy Storage: from Materials to Devices. Advanced Materials. vol. 28, pp.4306-4337

Xie, Y., and Feng, X., 2014, ‘Electrochemical Flexible Supercapacitor Based on Manganese Dioxide-Titanium Nitride Nanotube Hybrid’, Electrochimica Acta. vol. 120, pp. 273-283.

Zheng, K., Li, Y., Zhu, M., Yu, X., Zhang, M., Shi, L., Cheng, J., 2017, ‘The porous carbon derived from water hyacinth with well-designed hierarchical structure for supercapacitor’, Journal of Power Sources vol.366, pp270-277.

Zheng, K., Li, Y., Zhu, M., Yu, X., Zhang, M., Shi, L, 2017, “The porous Carbon Derived From Water Hyacinth with Well Designed Hierarchical Structure For Supercapacitorsâ€, Journal of Power Sources 336, 270-277 (2017)

Downloads

Published

2021-01-25

How to Cite

Hardi, A. D., Joni, R., Syukri, S., & Aziz, H. (2021). Pembuatan Karbon Aktif dari Tandan Kosong Kelapa Sawit sebagai Elektroda Superkapasitor. Jurnal Fisika Unand, 9(4), 479–486. https://doi.org/10.25077/jfu.9.4.479-486.2020

Issue

Section

Articles