Prediksi El Nino Southern Oscillation (ENSO) Menggunakan Jaringan Saraf Tiruan (JST)-Backpropagation
DOI:
https://doi.org/10.25077/jfu.9.4.421-427.2020Abstract
Penelitian ini bertujuan untuk memprediksi nilai indeks ENSO yaitu Sea Surface Temperature (Nino 1.2, Nino 3, Nino 3.4 dan Nino 4), Southern Oscillation Index (SOI) dan Multivariate ENSO Index versi 2 (MEI.v2) yang diambil dari tahun 1979-2018. Prediksi dilakukan dengan menggunakan metode JST-backpropagation dengan memvariasikan learning rate dan momentum. Semua indeks menghasilkan nilai akurasi prediksi ENSO yang tinggi, namun indeks Nino 4 merupakan indeks yang memiliki akurasi tertinggi karena nilai Mean Square Error (MSE) pelatihan dan pengujiannya yang relatif lebih kecil dibandingkan dengan indeks lainnya. Indeks Nino 4 memiliki MSE pelatihan 0,0072739 yang berhenti pada epoch ke-69 dan MSE pengujian 0,0085917 dengan akurasi prediksi 99,9989%. Hasil ini diperoleh dari arsitektur JST-backpropagation 12-10-1 dengan nilai learning rate 0,10 dan momentum 0,40. Prediksi ENSO berdasarkan indeks Nino 4 untuk tahun 2021 menunjukkan keadaan iklim dunia dalam kondisi normal.
 This study aims to predict ENSO index using Sea Surface Temperature (Nino 1.2, Nino 3, Nino 3.4 and Nino 4 indexes), Southern Oscillation Index (SOI), and Multivariate ENSO Index version 2 (MEI.v2) during  1979 - 2018. The prediction was carried out using the ANN-backpropagation method by varying the learning rate and momentum. All indices produce high ENSO prediction accuracy values, but the Nino 4 index is the best one because the Mean Square Error (MSE) for training and testing steps are relatively smaller than other indexes. The Nino 4 index has a training MSE of 0.0072739 which stops at the 69th epoch and a testing MSE of 0.0085917 with a predictive accuracy of 99.9989%. These results were obtained from the back-propagation architecture ANN 12-10-1 with a learning rate of 0.10 and a momentum of 0.40. The prediction of ENSO in 2021 based on the Nino 4 index shows that the world climate condition is under normal conditions.
References
Abbot, J. dan Marohasy, J., 2017, ‘Application Of Artificial Neural Networks To Forecasting Monthly Rainfall One Year In Advance For Locations Within The Murray Darling Basin, Australia’, Int. J. Sus. Dev. Plann, vol.12, no. 8, hal. 1282–1298.
Athoillah, I., Sibarani, R.M. dan Doloksaribu, D.E., 2017, ‘Analisi Spasial El Nino Kuat Tahun 2015 Dan La Nina Lemah Tahun 2016 (Pengaruhnya Terhadap Kelembapan, Angin Dan Curah Hujan Di Indonesia)’, Jurnal Sains & Teknologi Modifikasi Cuaca, vol. 18, no. 1, hal. 33–41.
Baawain, M.S., Nour, M.H., El-Din, A.G. dan El-Din, M.G., 2005, ‘El Nino Southern-Oscillation Prediction Using Selatanern Oscillation Index and Niño3 as Onset Indicators: Application of Artiï¬cial Neural Networks’, NRC Research Press, hal. 13–21.
Broni-Bedaiko, C., Katsriku, F.A., Unemi, T., Shinomiya, N., Jamal-Deen Abdulai, J., dan Atsumi, M., 2018, ‘El Nino-Southern Oscillation Forecasting Using Complex Networks Analysis of LSTM Neural Networks’, The Twenty-Third International Symposium on Artificial Life and Robotics, Bappu.
Dewi, S. M. dan Marzuki, 2020, ‘Analisis Pengaruh Pergeseran Lokasi ENSO terhadap Curah Hujan di Indonesia’, Jurnal Fisika Unand, vol. 9, no. 2, hal. 176 – 182.
Dijkstra, H.A., Petersik, P., Hernandez-Garcia, E., dan Lopez, C., 2019, ‘The Application of Machine Learning Techniques to Improve El Niño Prediction Skill’, Frontiers In Physics, vol.7, hal. 1-13.
Feng, Y., dan Tung, K., 2019, ‘ENSO Modulation: Real and Apparent; Implications for Decadal Prediction’, Springer-Verlag GmbH Germany.
Gers F.A., Schmidhuber J., Cummins F., 2000, ‘Learning to Forget: Continual Prediction with LSTM’, Neural Comput, vol. 12, no.10, hal: 2451–2471.
Hasieh, W.W., dan Tang, B., 1998, ‘Applying Neural Network Models to Prediction and Data Analysis in Meteorology and Oceanography’, Bulletin of the American Meteorological Society.
Hutabarat, M.A.P., Julham, M. dan Wanto, A., 2018, ‘Penerapan Algoritma Backpropagation dalam Memprediksi Produksi Tanaman Padi Sawah Menurut Kabupaten/Kota di Sumatera Utara’, semanTIK, vol. 4, no. 1.
Li, J., Xie, S., Cook, E.R., Morales, M.S., Christie, D.A., Johnson, N.C., Chen, F., D’Arrigo, R., Fowler, A.M., Gou, X., dan Fang, K., 2013, ‘El Nino Modulations Over The Past Seven Centuries’, Nature Climate Change, vol. 3, hal.822–826.
Ludescher, J., Gozolchianib, A., Bogacheva, M.I., Bundea, A., Havlinb, S., dan Schellnhuberd, H.J., 2014, ‘Very early warning of next El Nino’, Proceedings of the National Academy of Sciences, vol. 111, hal. 2064-2066.
Mu, B., Peng, C., Yuan, S., Chein, L., 2019, ‘ENSO Forecasting over Multiple Time Horizons Using ConvLSTM Network and Rolling Mechanism’, International Joint Conference on Neural Networks, Budapest.
Nooteboom, P.D., 1,3, Feng, Q.Y., 1,3, López, C., 2018, ‘Hernández-GarcÃa, E., dan Dijkstra, H.A., Using Network Theory and Machine Learning to Predict El Nino’, Earth System Dinamics, 2018, vol. 9, hal: 969-983.
Philander, S.G., 2013, El Nino, La Nina and the Southern Oscillation, Academic Press Inc, San Diego.
Sudibyakto, 2003, ‘Anomali Iklim Dan Mitigasi Kebakaran Hutan Di Indonesia’, Majalah Geografi Indonesia, vol. 17, no. 1, hal.71–80.
Vitri, T. dan Marzuki,, 2014, ‘Analisis Pengaruh El Nino Southern Oscilation (ENSO) terhadap Curah Hujan Di Koto Tabang Sumatera Barat’, Jurnal Fisika Unand, vol. 3, No. 4, hal. 214-221.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Jurnal Fisika Unand
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Please find the rights and licenses in JFU (Jurnal Fisika Unand).
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution-NonCommercial 4.0 International License.
2. Authors Warranties
The author warrants that the article is original, written by stated author(s), has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User Rights
JFU's spirit is to disseminate articles published are as free as possible. Under the Creative Commons license, JFU permits users to copy, distribute, display, and perform the work for non-commercial purposes only. Users will also need to attribute authors and JFU on distributing works in the journal.
4. Rights of Authors
Authors retain the following rights:
- Copyright, and other proprietary rights relating to the article, such as patent rights,
- The right to use the substance of the article in future own works, including lectures and books,
- The right to reproduce the article for own purposes, provided the copies are not offered for sale,
- The right to self-archive the article.
5. Co-Authorship
If the article was jointly prepared by other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or JFU upon two months notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating partys notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of JFU.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by JFU or its sublicensee.
8. Miscellaneous
JFU will publish the article (or have it published) in the journal if the articles editorial process is successfully completed and JFU or its sublicensee has become obligated to have the article published. JFU may conform the article to a style of punctuation, spelling, capitalization, referencing and usage that it deems appropriate. The author acknowledges that the article may be published so that it will be publicly accessible and such access will be free of charge for the readers.