Pengaruh Doping Al Pada ZnO Menggunakan Metode LPD Terhadap Efisiensi Dye Sensitized Solar Cells (DSSC)

Anla Fet Hardi, Dahyunir Dahlan

Abstract


Telah dilakukan pendopingan aluminium pada ZnO untuk meningkatkan efisiensi Dye Sensitized Solar Cells (DSSC). Sintesis lapisan ZnO dilakukan menggunakan metode Liquid Phase Deposition (LPD) pada suhu 80 oC selama 10 jam dengan variasi doping aluminium sebesar 0%; 1,0%; 1,5%; 2,0%; dan 2,5%. Sampel dikarakterisasi menggunakan XRD dan Spektroskopi UV-Vis sedangkan efisiensi DSSC diukur dengan menganalisis kurva I-V. Pola difraksi XRD lapisan ZnO tanpa dan dengan doping Al 1,5% memperlihatkan pola difraksi yang identik, yaitu terdapat puncak pada 2θ: 34o dan 36o yang menunjukkan karakteristik difraksi ZnO. Spektrum UV-Vis memperlihatkan absorpsi kuat pada panjang gelombang 280-380 nm yang berkaitan dengan energi gap 3,51; 3,50; 3,3; 3,11 dan 3,06 eV untuk doping 0%; 1,0%; 1,5%; 2,0% dan 2,5%, berturut-turut. Efisiensi DSSC sampel diukur menggunakan multimeter digital dan perangkat tambahan dengan intensitas cahaya 500-1500 Lux. Efisiensi tertinggi dihasilkan fotoanoda lapisan ZnO yang didoping aluminium 1,5%, yaitu sebesar 1,51% sedangkan terendah yaitu  fotoanoda tanpa doping yaitu 0,33%. Sehingga pemberian doping 1,5% mampu meningkatkan efisiensi sebesar 463% dibandingkan DSSC tanpa doping.

 

Doping of aluminium on ZnO has been done in order to increase the efficiency value of Dye Sensitized Solar Cells (DSSC). Synthesis of the ZnO layer used the Liquid Phase Deposition (LPD) method at 80 oC for 10 hours with aluminum doping variation of 0%; 1.0%; 1.5%; 2.0%; and 2.5%. Sample characterization was performed by XRD and UV-Vis Spectroscopy, while DSSC efficiency was measured by analyzing I-V characteristics. The XRD diffraction patterns for undoped and 1.5% Al-doped samples  display identical diffraction patterns, that there were peaks around 2θ: 34 and 36, which showed the characteristics of ZnO diffraction. The UV-Vis spectrum shows that strong absorption occurs in the wavelength range of 280-380 nm and the gap energy obtained is 3.51; 3.50; 3,3; 3.11 and 3.06 eV for 0%; 1.0%; 1.5%; 2.0% and 2.5%, respectively. The efficiency of DSSC samples was measured using a digital multimeter along enhancements with a light intensity of 500-1500 Lux. The highest efficiency is produced by 1.5% Al-doped ZnO of 1.51% while the lowest is undoped sample of 0.33%. The 1.5% Al-doped ZnO  can increase efficiency by 463% compared to undoped one.


Full Text:

PDF

References


Abdullah, M., Pengantar Nanosains, (ITB, Bandung, 2009).

Dahlan, D., Md Saad, S.K., Berli, A.U., Bajili, A., Umar, A.A., Synthesis of two-dimensional nanowall of Cu-Doped TiO2 and its application as photoanode in DSSCs. Physica E: Low-Dimensional Systems and Nanostructures, 91 (1), 185-18, (2017).

Dahlan, D., dan Fahyuan, H.D., Pengaruh Beberapa Jenis Dye Organik Terhadap Efisiensi Sel Surya Dye Sensitized Solar Cell, Jurnal Sains Materi Indonesia, 15(5), 74-79, (2014).

Haliq, R. dan Susanti, D., Pengaruh variasi Temperatur Kalsinasi Terhadap Sensitivitas Sensor Gas CO Dari Material Zink Oxide Hasil Proses Hidrotermal, Jurnal Teknik Pomits, 1(1), 1-7, (2014).

Iwantono, I. Anggelina, F. Nurrahmawati, P. Naumar, F.Y. Umar, A.A., Optimalisasi Efisiensi Dye Sensitized Solar Cells Dengan Penambahan Doping Logam Aluminium Pada Material Aktif Nanorod Zno Menggunakan Metode Hidrotermal, Jurnal Material dan Energi Indonesia, 6(1), 36-43, (2016).

Moezzi, A. McDonagh, A.M. Cortie, M.B., Zinc Oxide Particles: Synthesis, Properties and Application, Chemical Engineering Journal, 1(2), 85-186, (2012).

Roose, B., Pathak, S., Steiner, U., Doping TiO2 for Sensitized Solar Cell, Review Article, Chem. Soc, Rev, 44, 8326, (2015).

Saad, S.K.M., Umar, A.A, Nafisah, S., Salleh, M.M., dan Majlis, B.Y., Effect of TiO2 Nanostructure’s Shape on the DSSC Performance, RSM2013 Proc. Langkawi, Malaysia, 402 405, (2013).

Smestad, G., Bignozzi, C., Argazzi, R., Testing of Dye-Sensitized TiO2 Solar Cell I: Experimental Photocurrent Output and Conversion Efficiencies, Solar Energy Materials dan Solar Cells, 32(3), 259-272. (2003).




DOI: https://doi.org/10.25077/jfu.9.3.360-367.2020

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Published by:

Departemen Fisika, FMIPA Universitas Andalas

Kampus Unand Limau Manis Padang Sumatera Barat 25163

Telepon 0751-73307

Email:jfu@sci.unand.ac.id