Pengaruh Variasi Periodisitas Nanopartikel Ag-SiO2 terhadap Peningkatan Absorpsi Cahaya Matahari pada Sel Surya Organik

Authors

  • Ilham Perdana AT Laboratorium Fisika Material, Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Andalas
  • Mulda Muldarisnur Laboratorium Fisika Material, Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Andalas

DOI:

https://doi.org/10.25077/jfu.9.2.202-208.2020

Abstract

Telah dilakukan perhitungan numerik peningkatan absorpsi pada Sel Surya Organik (OSC) dengan penambahan nanopartikel core-shell Ag-SiO2 yang ditempatkan 1 nm di atas lapisan Indium Tin Oxide (ITO). Investigasi ini bertujuan untuk melihat pengaruh variasi besar periodisitas nanopartikel terhadap peningkatan absorpsi pada lapisan aktif sel surya organik. Perhitungan dilakukan menggunakan Metode Element Hingga (FEM). Besar periodisitas divariasikan pada rentang 60 – 300 nm dengan peningkatan periodisitas sebesar 20 nm. Hasil yang didapatkan menunjukkan periodisitas nanopartikel mempengaruhi nilai peningkatan absorpsi dengan hubungan yang tidak linear. Nilai peningkatan absorpsi optimum terjadi pada periodisitas 200 nm yaitu sebesar 77,9%. Peningkatan absorpsi optimum didapatkan dari kompetisi nilai hamburan medan jauh dan resonansi medan dekat sebagai akibat dari fenomena plasmon.

 

Calculation of absorption enhancement in Organic Solar Cells (OSC) with embedded core-shell Ag-SiO2 nanoparticles wich are placed 1 nm on top Indium Tin Oxide (ITO) layer has been done numerically. In this study, the investigation was gained to understand impact of varied nanoparticle periodicity. The calculation was carried out by using Finite Element Method (FEM). The periodicity was varied ranging 60 – 300 nm with which periodicity increasement is 20 nm. The results show that the periodicity affect the absorption enhancement nonlinearly. Optimum absorption Enhancement was gained in periodicity 200 nm which is 77.9%. The absorption enhancement was obtained by the competition of far-field scattering and near-field resonance which is an effect of plasmon.

References

Abass, A., Le, K.Q., Andrea, A., Burgelman, M., dan Maes, B., Dual-Interface Gratings for Broadband Absorption Enhancement in Thin-Film Solar Cells, Physical Review B, 85(115449), 1-7 (2012).

Alamdari, N., E, “Mixed Plasmonic Nanoparticles for Enhanced-Performance Organic Solar Cellsâ€, Tesis, Concordia University, Canada, 2013.

Bush, J., C, “Plasmonic Fluorescence Enhancement of Poly(3-Hexylthiophene) For Organic Solar Cell Applicationsâ€, Tesis, Western Carolina University, 2012.

Catchpole, K.R. dan Polman, A., “Plasmonic Solar Cellsâ€, Material for Sustainable Energyâ€, 16(26), OSA, 2010.

Chen, C. W., Hsio, S. Y., Chen, C. Y., Kang, H. W., Huang, Z. Y., dan Lin, H. W., “Optical Properties of Organometal Halide Perovskite Thin Films and General Device Structure Design Rules for Perovskite Single and Tandem Solar Cellsâ€, Journal of Material Chemistry, 3(17), 9152-9159 (2015).

Ciddor, P. H, “Refractive Index of Air: New Equations for The Visible and Near Infraredâ€, Applied Optics, 35(9), 1566-1573 (1996).

Ediger, V.S., “An Integrated Review and Analysis of Multi-Energy Transition from Fossil Fuels to Renewablesâ€, International conference on power and energy systems engineering, diedit oleh Bowlus, J. V., (Kadir Has University, Turkey, 2019). 2-6.

Goldemberg, J., Energy and The Challenge of Sustainability, (United Nations Development Programme, New York, 2000).

Gusak, V., “Nanoplasmonic for Solar Cellsâ€, Tesis, Chalmer University of Technology, Goteborg, 2014.

Konig, T. A. F., Ledin, P. A., Kerszulis, J., Mahmoud, M. A., El Sayed, M. A., dan John, R., “Electrically Tunable Plasmonic Behavior of Nanocube-Polymer Nanomaterialsâ€, 2014.

N’Konou, K., Peres, L. dan Torchio, P., “Optical Absorption Modeling of Plasmonic Organic Solar Cells Embedding Silica-Coated Silver Nanospheresâ€, (Crossmark, Springer Science, 2018).

Perez, M. dan Perez, R., “A Fundamental Look at Supply Side Energy Reserves for The Planetâ€, IEA-SHCP-Newsletter, 62, 4-6 (2015).

Rakic, A. D., “Algorithm for The Determination of Intrinsic Optical Constants of Metal Films: Aplication to Alumuniumâ€, Applied Optics, 34(22), 4755-4767 (1995).

Stelling, C., Singh, R. C., Karg, M., Konig, T. A. F., Thelakkat, M., dan Retsch, M., “Plasmonic Nanomeshes: Their Ambivalent Role as Transparent Electrodes in Organic Solar Cellsâ€, Scientific Reports, 7(42530), 1-13 (2017).

Sumithra, P., dan Thiripurasundari, D., “A review on Computational Electromagnetics Methodsâ€, Advanced Electromagnetics, 6(1), VIT University, 42 – 55 (2017).

Yang, H. U., D’Archangel, J., Sundheimer, M. L., Tucker, E., Boreman, G. D., dan Raschke, M. B., “Optical Dielectric Function of Silver, Physical Review B 91â€, 23(235137), 1-11 (2015).

The National Renenewable Energy Laboratory (NREL), 2019, Best Research-Cell Efficiencies, http://www.nrel.gov/pv/cell-efficiency.html, diakses Juli 2019.

Downloads

Published

2020-11-09

Issue

Section

Articles