Pengaruh Ukuran Dimer Nanopartikel Bola Emas, Perak, dan Aluminium yang Ditambahkan pada Lapisan Back Surface terhadap Efisiensi Sel Surya CIGS

Authors

  • Abi Syaibah Departemen Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Andalas
  • Mulda Muldarisnur Departemen Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Andalas https://orcid.org/0000-0002-0086-8753

DOI:

https://doi.org/10.25077/jfu.13.6.843-849.2024

Keywords:

CIGS solar cells, back surface, Dimmer Nanoparticle, Surface Plasmon, FDTD

Abstract

This research aims to determine the effect of the size and material of spherical nanoparticle dimers placed on the back surface layer of CIGS solar cells on the resulting current density. This research was conducted computationally using the finite difference time domain (FDTD) method. Three materials were studied: silver, gold, and aluminium. For each material, nanoparticle diameter was varied. The calculation results show that the short circuit current density (Jsc) increases with the nanoparticle diameter. Silver nanoparticle dimers showed the highest increase in Jsc. A sphere diameter of 60 nm produces the highest Jsc. The increase in the Jsc of CIGS solar cells is due to the back reflection of light into the active layer of solar cells by nanoparticles and the near field excitation around nanoparticle dimers. The significant increase in Jsc shows the potential for utilizing silver nanoparticle dimers to increase the efficiency of CIGS solar cells.

References

Atorf, B., Muehlenbernd, H., Muldarisnur, M., Zentgraf, T., & Kitzerow, H. (2014). Effect of Alignment on a Liquid Crystal/Split‐Ring Resonator Metasurface. ChemPhysChem, 15(7), 1470-1476, https://doi.org/10.1002/cphc.201301069

Aguilar, O., Castro, S. d., Godoy, M. P. F., & Dias, M. R. S. (2019). Optoelectronic characterization of Zn1-xCdxO thin films as an alternative to photonic crystals in organic solar cells. Opt. Mater. Express, 9, 3638-3648, https://doi.org/10.1364/OME.9.003638

Ali, L. S., & Abdullah, A. K. (2012). Computer Simulation of The Effect of Band Cap Grading of The CIGS Absorber Layer on The Performance of CdS/CIGS Thin Film Solar Cell Al-Rafadain Engineering Journal, 20(3), 44-55.

Amalathas, A. P., & Alkaisi, M. M. (2019). Nanostructures for Light Trapping in Thin Film Solar Cells. Micromachines 10(9), 619, , https://doi.org/10.3390/mi10090619

Barman, B., & Kalita, P. K. (2021). Influence of back surface field layer on enhancing the efficiency of CIGS solar cell. Solar Energy, 216, 329-337, https://doi.org/10.1016/j.solener.2021.01.032

Boukortt, N. E. I., Patanè, S., Hadri, B., & Crupi, G. (2023). Graded Bandgap Ultrathin CIGS Solar Cells. Electronics, 12(2), 393, https://doi.org/10.3390/electronics12020393

Ciddor, P. E. (1996). Refractive index of air: new equations for the visible and near infrared. Appl. Opt., 35, 1566-1573, https://doi.org/10.1364/AO.35.001566

Cousse, J. (2021). Still in love with solar energy? Installation size, affect, and the social acceptance of renewable energy technologies. Renewable and Sustainable Energy Reviews, 145, 111107, https://doi.org/10.1016/j.rser.2021.111107

Fahendri, F., Perdana, I., Abdullah, Z., & Muldarisnur, M. (2022). Enhancement of Light Absorption in the Active Layer of Organic Solar Cells using Ag:SiO2 Core-Shell Nanoparticles JPPIPA, 8(6)https://doi.org/10.29303/jppipa.v8i6.2393

Gezgi̇n, S. Y. g. t., & Kilic, H. S. (2020). An improvement on the conversion efficiency of Si-CZTS solar cells by LSPR effect of embedded plasmonic Au nanoparticles. Optical Materials, 101, 109760, https://doi.org/10.1016/j.optmat.2020.109760

Jost, M., Koehnen, E., Al-Ashouri, A., Bertram, T., Tomsic, S., Magomedov, A., Kasparavicius, E., Kodalle, T., Lipovsek, B., Getautis, V., Schlatmann, R., Kaufmann, C. A., Albrecht, S., & Topič, M. (2022). Perovskite/CIGS Tandem Solar Cells: From Certified 24.2% toward 30% and Beyond. ACS Energy Lett., 7(4), 1298–1307, https://doi.org/10.1021/acsenergylett.2c00274

Kaelin, M., Rudmann, D., & Tiwari, A. N. (2004). Low cost processing of CIGS thin film solar cells. Solar Energy, 77(6), 749-756, https://doi.org/10.1016/j.solener.2004.08.015

Kovacic, M., Krc, J., Lipovsek, B., Chen, W.-C., Edoff, M., Bolt, P. J., Deelen, J. v., Zhukova, M., Lontchi, J., Flandre, D., Salome, P., & Topic, M. (2019). Light management design in ultra-thin chalcopyrite photovoltaic devices by employing optical modelling. Solar Energy Materials and Solar Cells, 200, 109933, https://doi.org/10.1016/j.solmat.2019.109933

Licht, C., Peiro, L. T., & Villalba, G. (2015). Global Substance Flow Analysis of Gallium, Germanium, and Indium: Quantification of Extraction, Uses, and Dissipative Losses within their Anthropogenic Cycles. Journal of Industrial Ecology, 19(5), 890-903, https://doi.org/10.1111/jiec.12287

Loubat, A., Eypert, C., Mollica, F., Bouttemy, M., Naghavi, N., Lincot, D., & Etcheberry, A. (2017). Optical properties of ultrathin CIGS films studied by spectroscopic ellipsometry assisted by chemical engineering. Applied Surface Science, 421, 643-650, https://doi.org/10.1016/j.apsusc.2016.10.037

McPeak, K. M., Jayanti, S. V., Kress, S. J. P., Meyer, S., Iotti, S., Rossinelli, A., & Norris, D. J. (2015). Plasmonic Films Can Easily Be Better: Rules and Recipes. ACS Photonics, 2(3), 326–333, https://doi.org/10.1021/ph5004237

Mirzaei, M., Hasanzadeh, J., & Ziabari, A. A. (2020). Efficiency Enhancement of CZTS Solar Cells Using Al Plasmonic Nanoparticles: The Effect of Size and Period of Nanoparticles. Journal of Electronic Materials, 49(12), 7168–7178, https://doi.org/10.1007/s11664-020-08524-w

Muldarisnur, M., Fahendri, F., Perdana, I., Abdullah, Z., & Yusfi, M. (2023). Light absorption enhancement in organic solar cell using non-concentric Ag:SiO2 core-shell nanoparticles. Communications in Science and Technology, 8(1), 50–56, https://doi.org/10.21924/cst.8.1.2023.1076

Ninomiya, S., & Adachi, S. (1995). Optical properties of wurtzite CdS. J. Appl. Phys., 78, 1183-1190, https://doi.org/10.1063/1.360355
Ouédraogo, S., Zougmore, F., & Ndjaka, J. M. (2013). Numerical Analysis of Copper-Indium-Gallium-Diselenide-Based Solar Cells by SCAPS-1D. International Journal of Photoenergy, 2013, 1-9, https://doi.org/10.1155/2013/421076

Perdana, I., & Muldarisnur, M. (2020). Pengaruh Variasi Periodisitas Nanopartikel Ag-SiO2 terhadap Peningkatan Absorpsi Cahaya Matahari pada Sel Surya Organik. Jurnal Fisika Unand, 9(2), 202-208, https://doi.org/10.25077/jfu.9.2.202-208.2020

Rosenblatt, G., Simkhovich, B., Bartal, G., & Orenstein, M. (2020). Nonmodal Plasmonics: Controlling the Forced Optical Response of Nanostructures. Phys. Rev. X, 10(1), 011071, https://doi.org/10.1103/PhysRevX.10.011071

Royanian, S., Ziabari, A. A., & Yousefi, R. (2020). Efficiency Enhancement of Ultra-thin CIGS Solar Cells Using Bandgap Grading and Embedding Au Plasmonic Nanoparticles. Plasmonics, 15, 1173–1182, https://doi.org/10.1007/s11468-020-01138-2

Sim, J.-K., Um, D.-Y., Kim, J.-W., Kim, J.-S., Jeong, K.-U., & Lee, C.-R. (2019). Improvement in the performance of CIGS solar cells by introducing GaN nanowires on the absorber layer. Journal of Alloys and Compounds, 779, 643-647, https://doi.org/10.1016/j.jallcom.2018.11.297

Sobhani, F., Heidarzadeh, H., & Bahador, H. (2020). Efficiency enhancement of an ultra-thin film silicon solar cell using conical-shaped nanoparticles: similar to superposition (top, middle, and bottom). Opt. Quant. Electron., 52(9), 387, https://doi.org/10.1007/s11082-020-02487-2

Sui, F., Pan, M., Wang, Z., Chen, M., Li, W., Shao, Y., Li, W., & Yang, C. (2020). Quantum yield enhancement of Mn-doped CsPbCl3 perovskite nanocrystals as luminescent down-shifting layer for CIGS solar cells. Solar Energy, 206, 473-478, https://doi.org/10.1016/j.solener.2020.05.070

Treharne, R. E., Seymour-Pierce, A., Durose, K., Hutchings, K., Roncallo, S., & Lane, D. (2011). Optical design and fabrication of fully sputtered CdTe-CdS solar cells. J. Phys: Conf. Ser. 286, 012038, https://doi.org/10.1088/1742-6596/286/1/012038

Werner, W. S. M., Glantschnig, K., & Ambrosch-Draxl, C. (2009). Optical constants and inelastic electron-scattering data for 17 elemental metals. J. Phys Chem Ref. Data, 38, 1013-1092, https://doi.org/10.1063/1.3243762

Wu, Y., Zhang, C., Estakhri, N. M., Zhao, Y., Kim, J., Zhang, M., Liu, X.-X., Pribil, G. K., Alù, A., Shih, C.-K., & Li, X. (2014). Intrinsic Optical Properties and Enhanced Plasmonic Response of Epitaxial Silver. Adv. Mater., 26(35), 6106-6110, https://doi.org/10.1002/adma.201401474

Yassin, H. M., El-Batawy, Y. M., & Soliman, E. A. (2023). Enhancement of plasmonic photovoltaics with pyramidal nanoparticles. Appl. Opt., 62, 1961-1969, https://doi.org/10.21203/rs.3.rs-2226576/v1

Zarerasouli, P., Bahador, H., & Heidarzadeh, H. (2022). Performance improvement of an ultra-thin film solar cell based on optimized CIGS (Cu(In1-x, Gax)Se2) using appropriate plasmonic nanoparticles. Optical Materials, 131, 112729, https://doi.org/10.1016/j.optmat.2022.112729

Zarerasouli, P., Bahador, H., & Heidarzadeh, H. (2023). Design of an efficient ultra-thin film Cu(In,Ga)Se2 solar cell, using plasmonic cluster back reflectors. Solar Energy, 261, 1-6, https://doi.org/10.1016/j.solener.2023.06.001

Ziabari, A. A., Royanian, S., Yousefi, R., & Ghoreishi, S. (2020). Performance Improvement of Ultrathin CIGS Solar Cells Using Al Plasmonic Nanoparticles: The Effect of the Position of Nanoparticles. Journal of Optoelectronical Nanostructures, 5(4), 17-32.

Downloads

Published

2024-11-22

How to Cite

Syaibah, A., & Muldarisnur, M. (2024). Pengaruh Ukuran Dimer Nanopartikel Bola Emas, Perak, dan Aluminium yang Ditambahkan pada Lapisan Back Surface terhadap Efisiensi Sel Surya CIGS. Jurnal Fisika Unand, 13(6), 843–849. https://doi.org/10.25077/jfu.13.6.843-849.2024

Issue

Section

Articles