PEMBUATAN ELEKTRODA KAPASITOR KARBON BERPORI DARI TEMPURUNG KEMIRI (Aleurites moluccana) SEBAGAI SISTEM CAPACITIVE DEIONIZATION
DOI:
https://doi.org/10.25077/jfu.4.2.%25p.2015Abstract
ABSTRAK
Karbon aktif dibuat dari tempurung kemiri (Aleurites moluccana) menggunakan H3PO4 2,5% sebagai aktivator dengan suhu aktivasi 300, 400, 500, dan 600 ºC. Luas permukaan spesifik karbon yang dihasilkan masing-masing adalah 16,514; 6,582; 95,623; dan 391,567 m2/g. Daya elektrosorpsi meningkat dengan bertambahnya suhu aktivasi karena meningkatnya luas permukaan aktif. Karbon dengan suhu aktivasi 600 ºC digunakan sebagai bahan dasar pembuatan elektroda kapasitor untuk sistem capacitive deionization (CDI) menggunakan polimer polyvinyl alcohol (PVA) sebagai pengikat. Data voltammogram siklik digunakan untuk menentukan besar kapasitansi spesifik elektroda kapasitor yang dibuat dari karbon dengan suhu aktivasi 300 ºC dan 600 ºC. Besar kapasitansi spesifik berturut-turut adalah 81,19 mF/g dan 50,21 mF/g. Sifat kapasitor diamati menggunakan osiloskop dengan memberikan tegangan input berupa sinyal persegi periodik 1,5 V dan dihasilkan tegangan output untuk elektroda dengan suhu aktivasi karbon 300 ºC dan 600 ºC masing-masing adalah 0,2 V dan 0,6 V dengan pola pengisian dan pengosongan kapasitor.
Kata kunci :
karbon aktif, capacitive deionization, elektroda kapasitor, tempurung kemiri, H3PO4
Abstract
Activated carbon was made from candlenut shell (Aleurites moluccana) by using H3PO4 2.5% as activating agent. All samples were heated at the temperatures of 300, 400, 500, and 600 ºC. The results show that activated carbon has specific surface area 16.514; 6.582; 95.623; and 391.567 m2/g respectively. The higher the activation temperature, the higher the power of adsorption capacity since the surface area increases. Electrode capacitor for capacitive deionization (CDI) system was fabricated by using activated carbon that was heated at activation temperature of 600 ºC with polyvinyl alcohol (PVA) as the binder. From cyclic voltammogram of electrode, specific capacitance of CDI electrode by using carbon that was heated at the temperatures of 300 ºC and 600 ºC are 81.19 mF/g and 50.21 mF/g respectively. Characteristics charge and discharge of capacitor was obtained by using oscilloscope. The signal input is square wave 1.5 V and output signal for carbon that was heated at temperatures of 300 ºC and 600 ºC are sinusoidal wave 0.2 V and 0.6 V.
Keywords :
activated carbon, capacitive deionization, capacitor electrode, candlenut shell,H3PO4
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Melda Taspika, Astuti -
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Please find the rights and licenses in JFU (Jurnal Fisika Unand).
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution-NonCommercial 4.0 International License.
2. Authors Warranties
The author warrants that the article is original, written by stated author(s), has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User Rights
JFU's spirit is to disseminate articles published are as free as possible. Under the Creative Commons license, JFU permits users to copy, distribute, display, and perform the work for non-commercial purposes only. Users will also need to attribute authors and JFU on distributing works in the journal.
4. Rights of Authors
Authors retain the following rights:
- Copyright, and other proprietary rights relating to the article, such as patent rights,
- The right to use the substance of the article in future own works, including lectures and books,
- The right to reproduce the article for own purposes, provided the copies are not offered for sale,
- The right to self-archive the article.
5. Co-Authorship
If the article was jointly prepared by other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or JFU upon two months notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating partys notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of JFU.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by JFU or its sublicensee.
8. Miscellaneous
JFU will publish the article (or have it published) in the journal if the articles editorial process is successfully completed and JFU or its sublicensee has become obligated to have the article published. JFU may conform the article to a style of punctuation, spelling, capitalization, referencing and usage that it deems appropriate. The author acknowledges that the article may be published so that it will be publicly accessible and such access will be free of charge for the readers.