Analisis Pengaruh Variasi Elektrolit H2SO4, KOH, dan Na2SO4 terhadap Kinerja Elektrokimia Superkapasitor berbasis Biomassa Kulit Kakao

Authors

DOI:

https://doi.org/10.25077/jfu.13.5.610-616.2024

Keywords:

Biomass, Electrolite, Specific Capacitance, Cacao Husk, supercapacitors

Abstract

Utilization of cocoa pod waste (Theobroma cacao) as a supercapacitor carbon electrode through electrolyte optimisation was successfully conducted with 0.5M KOH chemical activator. Carbon production starts with slicing cocoa pods, sun drying, pre-carbonisation, crushing of carbon particles with mortar and ball milling, and particle size uniformity using a sieve. The obtained particle powder was chemically activated with 0.5M KOH, coin-molded into of carbon monolith and finished with integrated pyrolysis. Samples were subjected to one-stage integrated pyrolysis by carbonisation from room temperature to 600˚ C in an N2 gas environment, followed by physical activation to 700˚ C in a CO2 gas environment. Testing the electrochemical properties of carbon electrodes based on different types of electrolytes (H2SO4, KOH, and Na2SO4) IM using cyclic voltammetry (CV) and galvanostatic charge discharge (GCD) methods. The sample provided with H2SO4 electrolyte was confirmed to have the highest specific capacitance of 412.94 F/g at a current of 1 A/g. Based on the results of this study, it is confirmed that cocoa pods have the potential to be a source of electrode base material with H2SO4 electrolyte solution as a source of charge carrier in supercapacitor cell devices.

References

Afza, V. Y. Y., Muldarisnur, M., & Yetri, Y. (2021). Analisis Pengaruh Konsentrasi Elektrolit NaCl terhadap Karakteristik Karbon Aktif dari Kulit Buah Kakao. Jurnal Fisika Unand, 10(4), 486–492. https://doi.org/10.25077/jfu.10.4.486-492.2021

Armynah, B., Taer, E., Djafar, Z., Piarah, W. H., & Tahir, D. (2019). Effect of Temperature on Physical and Electrochemical Properties of the Monolithic Carbon-Based Bamboo Leaf to Enhanced Surface Area and Specific Capacitance of the Supercapacitor. International Journal of Electrochemical Science, 14(8), 7076–7087. https://doi.org/10.20964/2019.08.59

Azevedo, D. C. S., Araújo, J. C. S., Bastos-Neto, M., Torres, A. E. B., Jaguaribe, E. F., & Cavalcante, C. L. (2007). Microporous activated carbon prepared from coconut shells using chemical activation with zinc chloride. Microporous and Mesoporous Materials, 100(1–3), 361–364. https://doi.org/10.1016/j.micromeso.2006.11.024

Khajonrit, J., Sichumsaeng, T., Kalawa, O., Chaisit, S., Chinnakorn, A., Chanlek, N., & Maensiri, S. (2022). Mangosteen peel-derived activated carbon for supercapacitors. Progress in Natural Science: Materials International, 32(5), 570–578. https://doi.org/10.1016/j.pnsc.2022.09.004

Loppies, J. E. (2016). Karakteristik Arang Kulit Buah Kakao yang Dihasilkan dari Berbagai Kondisi Pirolisis The Characteristics of Cocoa Pod Husk Charcoal Produced in Various Pyrolysis Conditions. Jurnal Industri Hasil Perkebunan V, 11(2), 105–111.

Miller, J. R., & Burke, A. F. (2008). Electrochemical capacitors: Challenges and opportunities for real-world applications. Electrochemical Society Interface, 17(1), 53–57. https://doi.org/10.1149/2.f08081if

Nuradi, R. F., Muldarisnur, M., & Yetri, Y. (2022). Synthesis of Supercapacitor from Cocoa Fruit Peel Activated Carbon for Energy Storage. Jurnal Ilmu Fisika | Universitas Andalas, 14(2), 86–94. https://doi.org/10.25077/jif.14.2.86-94.2022

Pari, G., Darmawan, S., & Prihandoko, B. (2014). Porous Carbon Spheres from Hydrothermal Carbonization and KOH Activation on Cassava and Tapioca Flour Raw Material. Procedia Environmental Sciences, 20, 342–351. https://doi.org/10.1016/j.proenv.2014.03.043

Rahmi, F., Muldarisnur, M., & Yetri, Y. (2021). Variasi Konsentrasi Elektrolit H2SO4 untuk Pembuatan Karbon Aktif Kulit Buah Kakao sebagai Elektroda Superkapasitor dengan Aktivator ZnCl2. Jurnal Fisika Unand, 10(4), 467–472. https://doi.org/10.25077/jfu.10.4.467-472.2021

Simon, P., & Gogotsi, Y. (2010). Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1923), 3457–3467. https://doi.org/10.1098/rsta.2010.0109

Taer, E., Febriyanti, F., Mustika, W. S., Taslim, R., Agustino, A., & Apriwandi, A. (2021). Enhancing the performance of supercapacitor electrode from chemical activation of carbon nanofibers derived Areca catechu husk via one-stage integrated pyrolysis. Carbon Letters, 31(4), 601–612. https://doi.org/10.1007/s42823-020-00191-5

Yetri, Y., Hoang, A. T. M., Dahlan, D., Muldarisnur, Taer, E., & Chau, M. Q. (2020). Synthesis of activated carbon monolith derived from cocoa pods for supercapacitor electrodes application. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 00(00), 1–15. https://doi.org/10.1080/15567036.2020.1811433

Yetri, Y., Mursida, Dahlan, D., Taer, E., Agustino, & Muldarisnur. (2020). Identification of cacao peels potential as a basic of electrodes environmental friendly supercapacitors. Key Engineering Materials, 846 KEM, 274–281. https://doi.org/10.4028/www.scientific.net/KEM.846.274

Ying, Z., Zhang, Y., Lin, X., Hui, S., Wang, Y., Yang, Y., & Li, Y. (2020). A biomass-derived super-flexible hierarchically porous carbon film electrode prepared: Via environment-friendly ice-microcrystal pore-forming for supercapacitors. Chemical Communications, 56(73), 10730–10733. https://doi.org/10.1039/d0cc04436a

Downloads

Published

2024-09-02

Issue

Section

Articles