Studi Pengaruh Ketebalan Elektroda Karbon Aktif dari Kulit Buah Kakao terhadap Kinerja Elektrokimia Superkapasitor
DOI:
https://doi.org/10.25077/jfu.13.4.594-601.2024Keywords:
elektroda karbon, Kulit buah kakao, karbon aktif, supercapacitorsAbstract
Sintesis karbon aktif dari kulit kakao dengan variasi ketebalan elektroda 0,4; 0,5; dan 0,6 mm bertujuan untuk melihat pengaruhnya terhadap kinerja superkapasitor. Tebal elektroda yang berbeda diberi kode sampel yaitu tebal 0,4 mm dengan kode CC-0,4; tebal 0,5 dengan kode CC-0,5 mm dan tebal 0,6 mm dengan kode CC-0,6. Pembuatan elektroda karbon dari kulit kakao dilakukan dalam beberapa tahap yaitu pengeringan organik, prakarbonasi, aktivasi kimia menggunakan aktivator KOH 0,4 M dan pencetakan pelet menggunakan press hidrolik dengan tekanan 8 ton. Pelet yang telah dicetak dikarbonasi menggunakan gas N2 pada suhu 600 â°C dan aktivasi fisika menggunakan gas CO2 pada suhu 700 °C. Sifat elektrokimia dari sel superkapasitor ditinjau melalui sistem dua elektroda dalam elektrolit 1 M KOH. elektroda karbon aktif optimum yang diperoleh pada sampel CC-0,5 dengan kapasitansi spesifik yang tinggi mencapai 366,67 F/g pada rapat arus 1,0 A/g. Rapat energi maksimum yang didapatkan sebesar 660 Wh/Kg pada rapat daya optimum 2378,39 W/Kg. Potensi kulit kakao sebagai sumber karbon aktif dengan ketebalan 0,5 mm menunjukan kinerja perangkat penyimpanan energi elektrokimia superkapasitor yang tinggi dan stabil dengan ketahanan bahan yang baik.
References
Afza, V. Y. Y., Muldarisnur, M., & Yetri, Y. (2021). Analisis Pengaruh Konsentrasi Elektrolit NaCl terhadap Karakteristik Karbon Aktif dari Kulit Buah Kakao. Jurnal Fisika Unand, 10(4), 486-492. https://doi.org/10.25077/jfu.10.4.486-492.2021
Badan Pusat Statistik. (2021). Statistik Kakao Indonesia 2020. Badan Pusat Statistik.
Fang, C., Hu, P., Dong, S., Cheng, Y., Zhang, D., & Zhang, X. (2021). Construction of carbon nanorods supported hydrothermal carbon and carbon fiber from waste biomass straw for high strength supercapacitor. Journal of Colloid and Interface Science, 582, 552–560. https://doi.org/10.1016/j.jcis.2020.07.139
Farma, R., & Hasibuan, R. R. (2017). Karakterisasi Sifat Fisis dan Elektrokimia Sel Superkapasitor dengan Penumbuhan Nanopartikel Platinum di Atas Pengumpul Arus. Jurnal Komunikasi Fisika Indonesia, 14(2), 1067–1072.
Han, P., Cheng, M., Luo, D., Cui, W., Liu, H., Du, J., Wang, M., Zhao, Y., Chen, L., Zhu, C., & Xu, J. (2020). Selective etching of C-N bonds for preparation of porous carbon with ultrahigh specific surface area and superior capacitive performance. Energy Storage Materials, 24, 486–494. https://doi.org/10.1016/j.ensm.2019.07.009
Khajonrit, J., Sichumsaeng, T., Kalawa, O., Chaisit, S., Chinnakorn, A., Chanlek, N., & Maensiri, S. (2022). Mangosteen peel-derived activated carbon for supercapacitors. Progress in Natural Science: Materials International, 32(5), 570–578. https://doi.org/10.1016/j.pnsc.2022.09.004
Li, T., Ma, R., Xu, X., Sun, S., & Lin, J. (2021). Microwave-induced preparation of porous graphene nanosheets derived from biomass for supercapacitors. Microporous and Mesoporous Materials, 324(July), 111277. https://doi.org/10.1016/j.micromeso.2021.111277
Lu, Y., Zhang, S., Yin, J., Bai, C., Zhang, J., Li, Y., Yang, Y., Ge, Z., Zhang, M., Wei, L., Ma, M., Ma, Y., & Chen, Y. (2017). Mesoporous activated carbon materials with ultrahigh mesopore volume and effective specific surface area for high performance supercapacitors. Carbon, 124, 64–71. https://doi.org/10.1016/j.carbon.2017.08.044
Marchanda, H. (2022). Power Sector: Stumbling block in India’s net-zero journey. Observer Research Forum.
Nuradi, R. F., Muldarisnur, M., & Yetri, Y. (2022). Synthesis of Supercapacitor from Cocoa Fruit Peel Activated Carbon for Energy Storage. Jurnal Ilmu Fisika | Universitas Andalas, 14(2), 86–94. https://doi.org/10.25077/jif.14.2.86-94.2022
Pokharel, J., Gurung, A., Baniya, A., He, W., Chen, K., Pathak, R., Lamsal, B. S., Ghimire, N., & Zhou, Y. (2021). MOF-derived hierarchical carbon network as an extremely-high-performance supercapacitor electrode. Electrochimica Acta, 394, 139058. https://doi.org/10.1016/j.electacta.2021.139058
Prayogatama, A., & Kurniawan, T. (2022). Modifikasi Karbon Aktif dengan Aktivasi Kimia dan Fisika Menjadi Elektroda Superkapasitor. Jurnal Sains Dan Teknologi, 11(1), 47–58. https://dx.doi.org/10.23887/jst-undiksha.v11i1
Rahmi, F., Muldarisnur, M., & Yetri, Y. (2021). Variasi Konsentrasi Elektrolit H2SO4 untuk Pembuatan Karbon Aktif Kulit Buah Kakao sebagai Elektroda Superkapasitor dengan Aktivator ZnCl2. Jurnal Fisika Unand, 10(4), 467–472. https://doi.org/10.25077/jfu.10.4.467-472.2021
Saikia, B. K., Benoy, S. M., Bora, M., Tamuly, J., Pandey, M., & Bhattacharya, D. (2020). A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials. Fuel, 282(July), 118796. https://doi.org/10.1016/j.fuel.2020.118796
Sajjad, M., Khan, Y., & Lu, W. (2021). One-pot Synthesis of 2D SnS2 Nanorods with High Energy Density and Long Term Stability for High-Performance Hybrid Supercapacitor. Journal of Energy Storage, 35(January), 102336. https://doi.org/10.1016/j.est.2021.102336
Senneca, O., Cerciello, F., Russo, C., Wütscher, A., Muhler, M., & Apicella, B. (2020). Thermal treatment of lignin, cellulose and hemicellulose in nitrogen and carbon dioxide. Fuel, 271(March), 117656. https://doi.org/10.1016/j.fuel.2020.117656
Taer, E., Febriyanti, F., Mustika, W. S., Taslim, R., Agustino, A., & Apriwandi, A. (2021). Enhancing the performance of supercapacitor electrode from chemical activation of carbon nanofibers derived Areca catechu husk via one-stage integrated pyrolysis. Carbon Letters, 31(4), 601–612. https://doi.org/10.1007/s42823-020-00191-5
Tsay, K. C., Zhang, L., & Zhang, J. (2012). Effects of electrode layer composition/thickness and electrolyte concentration on both specific capacitance and energy density of supercapacitor. Electrochimica Acta, 60, 428–436. https://doi.org/10.1016/j.electacta.2011.11.087
Yetri, Y., Mursida, Dahlan, D., Taer, E., Agustino, & Muldarisnur. (2020). Identification of cacao peels potential as a basic of electrodes environmental friendly supercapacitors. Key Engineering Materials, 846 KEM, 274–281. https://doi.org/10.4028/www.scientific.net/KEM.846.274
Yusriwandi, Y., Taer, E., & Farma, R. (2017). Pembuatan dan Karakterisasi Elektroda Karbon Aktif dengan Karbonisasi dan Aktivasi Bertingkat Menggunakan Gas CO2 dan Uap Air. Edu Research, 6(1), 21–26.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 irsya dunnas, muldarisnur muldarisnur, Yuli Yetri, widi mulia nasution
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Please find the rights and licenses in JFU (Jurnal Fisika Unand).
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution-NonCommercial 4.0 International License.
2. Authors Warranties
The author warrants that the article is original, written by stated author(s), has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User Rights
JFU's spirit is to disseminate articles published are as free as possible. Under the Creative Commons license, JFU permits users to copy, distribute, display, and perform the work for non-commercial purposes only. Users will also need to attribute authors and JFU on distributing works in the journal.
4. Rights of Authors
Authors retain the following rights:
- Copyright, and other proprietary rights relating to the article, such as patent rights,
- The right to use the substance of the article in future own works, including lectures and books,
- The right to reproduce the article for own purposes, provided the copies are not offered for sale,
- The right to self-archive the article.
5. Co-Authorship
If the article was jointly prepared by other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or JFU upon two months notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating partys notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of JFU.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by JFU or its sublicensee.
8. Miscellaneous
JFU will publish the article (or have it published) in the journal if the articles editorial process is successfully completed and JFU or its sublicensee has become obligated to have the article published. JFU may conform the article to a style of punctuation, spelling, capitalization, referencing and usage that it deems appropriate. The author acknowledges that the article may be published so that it will be publicly accessible and such access will be free of charge for the readers.