Pengaruh Filter Lowpass Terhadap Kualitas Citra CT-Scan Paru-Paru

Authors

  • Sofhia Ulga Departemen Fisika, Universitas Andalas
  • Afdhal Muttaqin Departemen Fisika, Universitas Andalas
  • Dian Fitriyani Departemen Fisika, Universitas Andalas

DOI:

https://doi.org/10.25077/jfu.13.4.587-593.2024

Keywords:

Kernel weight, CT-Scan, lung, Lowpass filter

Abstract

A low pass filter can be employed to enhance the quality of lung CT-Scan images by smoothing sharp transitions and reducing noise present in the images. The aim of this research is to implement a low pass filter by applying different weight values. The kernel weights applied in filtering using a low pass filter are 1/6, 1/9, 1/10, and 1/16. This study is a quantitative research employing 102 images. The findings of this study reveal that applying low pass filters with different kernel weights yields varying image qualities. Based on the quality tests of Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR), it was found that the kernel weight of 1/6 produces images with excellent quality at 17,65%, good quality at 28,93%, and fair quality at 53,92%. Meanwhile, with a kernel weight of the 1/9, 36,36% of the images were found to have good quality, while 64% exhibited lower quality. The application of a low pass filter with a kernel weight of 1/10 resulted in 39% of the images being of good quality and 61% of the images being of lower quality. At the kernel weight of 1/16, 2% of the images were obtained with excellent quality, 40% with good quality, and 58% with lower quality. Based on the MSE and PSNR test values, it was found that applying a kernel weight of 1/6 resulted in better image quality compared to applying other kernel weights. From the overall result, it was found that the application of a low pass filter was not suitable for improving the quality of CT-Scan images of the lung, so other methods could be applied to improve the quality of the images.

References

Bastian, A., Zaliluddin, D. & Al Maroghi, M. S. (2022). Implementasi Pemrograman Paralel Menggunakan Platform Openmp Pada Citra Digital Dengan Metode Low-Pass Filter Dan Histogram Equalization. INFOTECH journal, 8(1), pp. 28-33. doi:10.31949/infotech.v8i1.1878.

Cahyan, P. (2013). Segmentasi citra digital dengan menggunakan algoritma Watershed dan lowpass filter sebagai proses awal. Universitas Brawijaya.

Faradilla, P., Rezky, S.F. & Hamdani, R. (2022). Implementasi Metode Kernel Konvolusi Dan Contrast Stretching Untuk Perbaikan Kualitas Citra Digital. Jurnal Sistem Informasi Triguna Dharma (JURSI TGD), 1(6), pp. 865–875. doi:10.53513/jursi.v1i6.6297.

Herlinda, S., Fitriyani, D. & Marzuki. (2019). Analisis Pengaruh Kuat Arus dan Tegangan Terhadap Kualitas Citra Computed Tomography (CT) Scan Siemens Perspective di RSUP Dr. M. Djamil Padang. Positron, 9(1), p. 39. doi:10.26418/positron.v9i1.31138.

Hovinga, M. Serengers, r., kauczor, H-U., & Scaefer-Proko, C. (2016). CT imaging of Interstitial Lung Disease. In Medical Radiology. Springer Science and Business Media Deutschland GmbH, pp. 105–130. https://doi.org/10.1007/978-3-319-30355-0_7.

Prakoso, G. A. (2017). Penerapan Metode Low Pass Filter (Lpf) Untuk Mengurangi Derau Pada Citra Magnetic Resonance Imaging (Mri). Universitas Muhammadiyah Surakarta .

Serai, S.D., Hu, H. H, Ahmad, R., While, S., Pednekar, A., Anupindi, S. A., & Lee, E. Y. (2020). Newly developed methods for reducing motion artifacts in pediatric abdominal MRI: Tips and Pearls. American Journal of Roentgenology, 214(5), pp. 1042-1053. doi:10.2214/AJR.19.21987.

Simangunsong, P. B. N. (2018). Peningkatan Kualitas Citra Pada Studio Photography Dengan Menggunakan Metode Gaussian Filter. Jurnal Teknik Informatika UNIKA Santo Thomas, 3(1), pp. 59-63.

Sitinjak, S. (2020). Pengujian Modifikasi Kernel Konvolusi Untuk Penajaman Dan Penghalusan Citra Berwarna. Faktor Exacta, 13(2), pp. 96–105. doi:10.30998/faktorexacta.v13i2.6585.

Wardhani, R.N. & Delimayanti, M. K. (2011). Analisis Penerapan Metode Konvolusi Untuk Untuk Reduksi Derau Pada Citra Digital. Jurnal Poli Teknologi, 10(2), pp. 191-198.

Wijaya, R.S.D., Suksmono, A.B. & Mengko, T. L. (2021). Segmentasi Citra Kanker Serviks Menggunakan Markov Random Field dan Algoritma K-Means. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 5(1), pp. 139-147. doi:10.29207/resti.v5i1.2816.

Downloads

Published

2024-07-01

How to Cite

Ulga, S., Muttaqin, A., & Fitriyani, D. (2024). Pengaruh Filter Lowpass Terhadap Kualitas Citra CT-Scan Paru-Paru. Jurnal Fisika Unand, 13(4), 587–593. https://doi.org/10.25077/jfu.13.4.587-593.2024

Issue

Section

Articles