Montmorillonit K-10 yang Dimodifikasi Ni2+: Sifat Struktur dan Aktivitas Katalitik

Authors

  • Admi Admi Departemen Kimia Universitas Andalas
  • Dewi Khofifatul Khoiriah Departemen Kimia Universitas Andalas
  • Syukri Syukri Departemen Kimia Universitas Andalas

DOI:

https://doi.org/10.25077/jfu.13.3.439-444.2024

Keywords:

Montmorillonite K-10, Ni2 kation-exchange, Transesterification, Biodiesel, Waste Cooking Oil

Abstract

Fokus studi ini adalah mensintesis material berbasis montmorillonit K-10 yang dimodifikasi dengan spesies Ni2+ melalui metoda hidrotermal. Pengaruh aktivasi termal terhadap support montmorillonit K-10 pada proses pertukaran kation untuk menghasilkan katalis heterogen dikarakterisasi dengan x-raydiffraction (XRD) dan x-ray fluoressence (XRF). Analisis XRF sampel menunjukkan bahwa kemampuan pertukaran kation sampel montmorillonit K-10 terhadap Ni2+ berdampak pada peningkatan kandungan nikel pada semua sampel yang dimodifikasi dibandingkan dengan yang tidak dimodifikasi. Analisis XRD terhadap struktur sampel yang dimodifikasi mengungkapkan bahwa struktur dasar clay 2:1 (T:O:T) tahan selama proses pertukaran kation. Kinerja katalis heterogen yang dihasilkan diuji pada reaksi transesterifikasi minyak jelantah dengan metanol untuk produksi FAME (Fatty Acid Methyl ester) (biodisel). Evaluasi uji katalitik menunjukkan bahwa montmorillonit K-10 yang dimodifikasi Ni2+ memberikan peningkatan % rendemen FAME. Hal ini mengindikasikan bahwa material montmorillonit K-10 yang dimodifikasi  Ni2+sebagai katalis heterogen yang berpotensi untuk produksi biodisel.

References

Aher, R. D., Gade, M. H., Santhosh Reddy, R., & Sudalai, A. (2012). Cu II-exchanged montmorillonite K10 clay-catalyzed direct carboxylation of terminal alkynes with carbon dioxide. In Indian Journal of Chemistry (Vol. 51).

Ahmad, M., Zafar, M., Ali, N., & Lu, H. (2017). Biodiesel synthesis from Saussurea heteromalla (D.Don) Hand-Mazz integrating ethanol production using biorefinery approach. Energy, 141, 1810–1818. https://doi.org/10.1016/j.energy.2017.11.074

Ayoub, M., Hussain Bhat ※, A., Ullah ※, S., Ahmad ※, M., & Uemura, Y. (2017). Optimization of Biodiesel Production over Alkaline Modified Clay Catalyst Special articles: JCREN Ⅱ 特集:JCREN Ⅱ Technical Report. In J. Jpn. Inst. Energy (Vol. 96, Issue 10).

Dharne, S., & Bokade, V. V. (2011). Esterification of levulinic acid to n-butyl levulinate over heteropolyacid supported on acid-treated clay. Journal of Natural Gas Chemistry, 20(1), 18–24. https://doi.org/10.1016/S1003-9953(10)60147-8

Harun, F. W., Jihadi, N. I. M., Ramli, S., Hassan, N. R. A., & Zubir, N. A. M. (2018). Esterification of oleic acid with alcohols over Cu-MMT K10 and Fe-MMT K10 as acid catalysts. AIP Conference Proceedings, 1972. https://doi.org/10.1063/1.5041246

Inayat, A., Nassef, A. M., Rezk, H., Sayed, E. T., Abdelkareem, M. A., & Olabi, A. G. (2019). Fuzzy modeling and parameters optimization for the enhancement of biodiesel production from waste frying oil over montmorillonite clay K-30. Science of the Total Environment, 666, 821–827. https://doi.org/10.1016/j.scitotenv.2019.02.321

Jha, A., Garade, A. C., Shirai, M., & Rode, C. V. (2013). Metal cation-exchanged montmorillonite clay as catalysts for hydroxyalkylation reaction. Applied Clay Science, 74, 141–146. https://doi.org/10.1016/j.clay.2012.10.005

Joseph, T., Shanbhag, G. V., & Halligudi, S. B. (2005). Copper(II) ion-exchanged montmorillonite as catalyst for the direct addition of NH bond to CC triple bond. Journal of Molecular Catalysis A: Chemical, 236(1–2), 139–144. https://doi.org/10.1016/j.molcata.2005.04.022

Nasreen, S., Nafees, M., Jaffar, M. M., Qurashi, L. A., Tabraiz, S., & khan, R. (2017). Comparison and effect of Cinder supported with Manganese and Lanthanum oxide for biodiesel production. International Journal of Hydrogen Energy, 42(29), 18389–18396. https://doi.org/10.1016/j.ijhydene.2017.04.157

Olutoye, M. A., Wong, S. W., Chin, L. H., Amani, H., Asif, M., & Hameed, B. H. (2016). Synthesis of fatty acid methyl esters via the transesterification of waste cooking oil by methanol with a barium-modified montmorillonite K10 catalyst. Renewable Energy, 86, 392–398. https://doi.org/10.1016/j.renene.2015.08.016

Rangel-Porras, G., Quiroga-Almaguer, A., Ramírez-Hernández, A., Bachiller-Baeza, B., Pfeiffer-Perea, H., & Rangel-Rivera, P. (2023). Effects of the Inclusion of Ce and Ni Species on Ti for Modification of K10-Clay by Sol-Gel and their Use as Catalysts in the Liquid-Phase Esterification Systems. Clays and Clay Minerals, 71(2), 191–206. https://doi.org/10.1007/s42860-023-00244-6

Saeed, M., Munir, M., Nafees, M., Shah, S. S. A., Ullah, H., & Waseem, A. (2020). Synthesis, characterization and applications of silylation based grafted bentonites for the removal of Sudan dyes: Isothermal, kinetic and thermodynamic studies. Microporous and Mesoporous Materials, 291. https://doi.org/10.1016/j.micromeso.2019.109697

Sharma, P., & Bhavani, A. G. (2021). Green, cost effective barium loaded montmorillonite catalyst for biodiesel synthesis from waste cooking oil. Materials Today: Proceedings, 45, 4544–4549. https://doi.org/10.1016/j.matpr.2020.12.1202

Tyagi, B., Chudasama, C. D., & Jasra, R. V. (2006). Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 64(2), 273–278. https://doi.org/10.1016/j.saa.2005.07.018

Wang, F. F., Liu, J., Li, H., Liu, C. L., Yang, R. Z., & Dong, W. S. (2015). Conversion of cellulose to lactic acid catalyzed by erbium-exchanged montmorillonite K10. Green Chemistry, 17(4), 2455–2463. https://doi.org/10.1039/c4gc02131b

Yahya, S., Muhamad Wahab, S. K., & Harun, F. W. (2020). Optimization of biodiesel production from waste cooking oil using Fe-Montmorillonite K10 by response surface methodology. Renewable Energy, 157, 164–172. https://doi.org/10.1016/j.renene.2020.04.149

Zatta, L., Ramos, L. P., & Wypych, F. (2013). Acid-activated montmorillonites as heterogeneous catalysts for the esterification of lauric acid acid with methanol. Applied Clay Science, 80–81, 236–244. https://doi.org/10.1016/j.clay.2013.04.009

Downloads

Published

2024-05-03

How to Cite

Admi, A., Khoiriah, D. K., & Syukri, S. (2024). Montmorillonit K-10 yang Dimodifikasi Ni2+: Sifat Struktur dan Aktivitas Katalitik. Jurnal Fisika Unand, 13(3), 439–444. https://doi.org/10.25077/jfu.13.3.439-444.2024

Issue

Section

Articles