Sintesis Reduced Graphene Oxide dari Limbah Biomassa Serabut Kelapa Sawit dengan Metode Microwave
DOI:
https://doi.org/10.25077/jfu.13.3.392-398.2024Keywords:
Biomassa, Microwave, Reduced Graphene Oxide, Serabut Kelapa SawitAbstract
Pada penelitian ini membahas tentang pembuatan Reduced Graphene Oxide (rGO) dengan memanfaatkan limbah serabut kelapa sawit dari Aceh. Serabut kelapa sawit termasuk biomassa lignoselulosa berupa serat yang memiliki komponen utama selulosa 59,6%, lignin 28,5%, protein kasar 3,6%, lemak 1,9%, abu 5,6% dan impurities 8%. Metode yang digunakan dalam preparasi rGO adalah metode microwave. Sampel yang telah mendapat perlakuan microwave kemudian dikarakterisasi menggunakan XRD dan SEM untuk mengetahui fasa amorf dan morfologi dari sampel. Pada analisis XRD diperoleh hasil bahwa reduce graphene oxide memiliki fase amorf yang lebih dominan. Kemudian, pada analisis SEM diperoleh hasil bahwa GO dan rGO memiliki perbedaan morfologi pada permukaan sampel, dimana rGO memiliki bentuk lembaran yang lebih tipis daripada GO. Pada penelitian ini dapat diambil kesimpulan bahwa sintesis rGO yang telah dilakukan menggunakan serabut kelapa sawit dengan metode microwave belum sepenuhnya berhasil, dimana masih terdapat kandungan Graphene Oxide (GO) yang tidak tereduksi sempurna menjadi Reduced Graphene Oxide (rGO).References
Agusu, L., Ahmad, L. O., Anggara, D., Alimin, Mitsudo, S., Fujii, Y., & Kikuchi, H. (2018). Microwave Hydrothermal Synthesis of Reduced Graphene Oxide: Effects of Microwave Power and Irradiation Time. Journal of Physics, 1011(1), 1–8. https://doi.org/10.1088/1742-6596/1011/1/012012
Aimon, A. H., Hidayat, R., Rahmawati, D., Sutarto, R., Permatasari, F. A., & Iskandar, F. (2019). Facile Deposition of Reduced Graphene Oxide-Based Transparent Conductive Film with Microwave Assisted Method. Thin Solid Films, 692, 137618. https://doi.org/10.1016/j.tsf.2019.137618
Aryani, T., & Mu’awanah, I. A. U. (2023). Kajian Awal Sintesis Reduced Graphene Oxide (rGO) Metode Iradiasi Microwave dan Ultrasonikasi. Jurnal Kolaboratif Sains, 6(8), 1055–1060. https://doi.org/10.56338/jks.v6i8.3623
Cao, N., & Zhang, Y. (2015). Study of Reduced Graphene Oxide Preparation by Hummers’ Method and Related Characterization. Journal of Nanomaterials, 1–5. https://doi.org/10.1155/2015/168125
Dahliana, Kurniawan, E., Ginting, Z., Ishak, & Dewi, R. (2022). Pemanfaatan Limbah Serabut Kelapa Sawit (Elaeis guineensis jacg.) sebagai Sumber Energi Alternatif dalam Pembuatan Biopelet. Chemical Engineering Journal Storage, 2(2), 11–24. https://doi.org/10.29103/cejs.v2i2.6013
Fauzi, F., & Dwandaru, W. S. B. (2021). Analisis Karakteristik Graphene Oxide dan Reduksinya melalui Gelombang Mikro. Jurnal Fisika, 11(1), 9–18. https://doi.org/10.15294/jf.v11i1.28136
Febriani, S. T., Jumiati, E., & Husnah, M. (2023). Analisis Struktur Karakterisasi XRD dan SEM pada Reduced Graphene Oxide ( rGO ) Limbah Ban. Jurnal Komunikasi Fisika Indonesia, 20(1), 49–54. https://doi.org/10.31258/jkfi.20.1.49-54
Geim, A. K., & Novoselov, K. S. (2007). The Rise of Graphene. Nature Materials, 6(1), 183–191. https://doi.org/10.1007/978-3-319-70329-9
Herawan, S. G., Hadi, M. S., Ayob, M. R., & Putra, A. (2013).
Characterization of Activated Carbons from Oil-Palm Shell by CO2 Activation with No Holding Carbonization Temperature. The Scientific World Journal, 1, 1–6. https://doi.org/10.1155/2013/624865
Hermiati, E., Mangunwidjaja, D., Candra Sunarti, T., & Suparno, O. (2010). Pemanfaatan Biomassa Lignoselulosa Ampas Tebu untuk Produksi Bioetanol. Jurnal Litbang Pertanian, 29(4), 121–130.
Isro, A. (2023). Optimasi DSPE Berbasis Graphene Oxide (GO) dari Limbah Kulit Singkong dalam Penentuan Residu Antibiotik Ciprofloxacin. Universitas Lampung.
Janowska, I., Chizari, K., Ersen, O., Zafeiratos, S., Soubane, D., da Costa, V., Speisser, V., Boeglin, C., Houllé, M., Bégin, D., Plee, D., Ledoux, M. J., & Pham-Huu, C. (2010). Microwave Synthesis of Large Few-Layer Graphene Sheets in Aqueous Solution of Ammonia. Nano Research, 3(2), 126–137. https://doi.org/10.1007/s12274-010-1017-1
Moosa, A. A., & Abed, M. S. (2021). Graphene preparation and graphite exfoliation. Turkish Journal of Chemistry, 45(3), 493–519. https://doi.org/10.3906/kim-2101-19
Nayanajith, L. D. C., De Silva, R. C. L., Rosa, S. R. D., & Kottegoda, I. R. M. (2022). Optimization of Oxidation Time of Kahatagaha Vein Graphite and Reduction Time of Microwave Assisted Hydrothermal Reduction of Kahatagaha Graphene Oxide. Sri Lankan Journal of Physics, 23(2), 77–92. https://doi.org/10.4038/sljp.v23i2.8125
Park, S., An, J., Potts, J. R., Velamakanni, A., Murali, S., & Ruoff, R. S. (2011). Hydrazine-Reduction of Graphite- and Graphene Oxide. Carbon, 49(9), 3019–3023. https://doi.org/10.1016/j.carbon.2011.02.071
Pratama, A., Destiarti, L., & Adhitiyawarman, A. (2021). Sintesis Titanium Oksida/Reduced Graphene Oxide (TiO2/rGO) untuk Fotokatalisis Bahan Pewarna Metilen Biru. Positron, 11(1), 31–37. https://doi.org/10.26418/positron.v11i1.45355
Putri, N. A. (2021). Sintesis Reduced Graphene Oxide (rGO) dengan Metode Hummer Termodifikasi. Universitas Islam Negeri Maulana Malik Ibrahim Malang.
Rahayu, P., Putri, N. P., & Rohmawati, L. (2017). Karakteristik Reduced Graphene Oxide (rGO) Berbahan Dasar Limbah Batang Padi. Jurnal Sains & Matematika, 6(1), 26–31.
Safitri, R. F., & Kusumawati, D. H. (2020). Review: Aplikasi Bahan Komposit Berbasis Reduced Graphene Oxide (rGO). Jurnal Inovasi Fisika Indonesia, 9(2), 93–104. https://doi.org/10.26740/ifi.v9n2.p93-104
Saleh, A., Amhadin, F. A., & Novianty, I. (2022). Synthesis of Reduced Graphene Oxide and Zinc Oxide Composite From Candlenut Shell Charcoal (Aleuritas moluccana). Journal of Islamic Science and Technology, 8(1), 1–11. https://doi.org/10.22373/ekw.v8i1.9405
Saputra, B. Y. E., Fahmi, M. F., & Widjaja, T. (2022). Fraksinasi Lignoselulosa dari TKKS dengan Metode Steam Explosion Pretreatment Disertai Penambahan Asam Formiat. Jurnal Teknik ITS, 11(2), 67–72. https://doi.org/10.12962/j23373539.v11i2.89395
Setiadji, S., Nuryadin, B. W., Ramadhan, H., Sundari, C. D. D., Sudiarti, T., Supriadin, A., & Ivansyah, A. L. (2018). Preparation of reduced Graphene Oxide (rGO) assisted by microwave irradiation and hydrothermal for reduction methods. IOP Conf. Series: Materials Science and Engineering, 434(1), 1–9. https://doi.org/10.1088/1757-899X/434/1/012079
Sjahriza, A., & Herlambang, S. (2021). Sintesis Oksida Grafena dari Arang Tempurung Kelapa Untuk Aplikasi Antibakteri dan Antioksidan. Jurnal Ilmu Kimia Dan Terapan, 8(2), 51–58. https://doi.org/10.15575/ak.v8i2.13473
Suwarno, A. S. W. (2022). Sintesis dan Karakterisasi Reduced Graphene Oxide (rGO) dari Limbah Tongkol Jagung Menggunakan Metode Hummers Modifikasi. Universitas Pembangunan Nasional “Veteran†Jawa Timur.
Yanti, D. R., Hikmah, U., Prasetyo, A., & Hastuti, E. (2020). The Effect of Microwave Irradiation on Reduced Graphene Oxide from Coconut Shells. IOP Conference Series: Earth and Environmental Science, 456(1), 1–6. https://doi.org/10.1088/1755-1315/456/1/012008
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Dona Avrilia Kristanti
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Please find the rights and licenses in JFU (Jurnal Fisika Unand).
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution-NonCommercial 4.0 International License.
2. Authors Warranties
The author warrants that the article is original, written by stated author(s), has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User Rights
JFU's spirit is to disseminate articles published are as free as possible. Under the Creative Commons license, JFU permits users to copy, distribute, display, and perform the work for non-commercial purposes only. Users will also need to attribute authors and JFU on distributing works in the journal.
4. Rights of Authors
Authors retain the following rights:
- Copyright, and other proprietary rights relating to the article, such as patent rights,
- The right to use the substance of the article in future own works, including lectures and books,
- The right to reproduce the article for own purposes, provided the copies are not offered for sale,
- The right to self-archive the article.
5. Co-Authorship
If the article was jointly prepared by other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or JFU upon two months notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating partys notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of JFU.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by JFU or its sublicensee.
8. Miscellaneous
JFU will publish the article (or have it published) in the journal if the articles editorial process is successfully completed and JFU or its sublicensee has become obligated to have the article published. JFU may conform the article to a style of punctuation, spelling, capitalization, referencing and usage that it deems appropriate. The author acknowledges that the article may be published so that it will be publicly accessible and such access will be free of charge for the readers.