Ekstraksi dan Karakterisasi Senyawa Besi Oksida dari Batuan Vulkanik Pulau Ambon menggunakan Metode Kopresipitasi
DOI:
https://doi.org/10.25077/jfu.13.1.159-169.2024Keywords:
Batuan Vulkanik, Besi Oksida, Ekstraksi, KopresipitasiAbstract
Senyawa besi oksida pada batuan vulkanik Pulau Ambon memiliki potensi untuk dimanfaatkan sebagai material maju di masa depan. Untuk memanfaatkan potensi tersebut diperlukan sebuah usaha dengan cara mengekstraksi senyawa besi oksida. Pada penelitian ini metode kopresipitasi digunakan untuk mengekstraksi senyawa besi oksida. Hasil ekstraksi kemudian dikarakterisasi menggunakan beberapa instrumen seperti X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), dan Scanning Electron Microscope (SEM). Hasil karakterisasi menunjukkan senyawa besi oksida yang dihasilkan memiliki tingkat kemurnian dibawah 50%. Fasa mineral oksida yang terdeteksi dari data XRD adalah magnetit (Fe3O4), maghemit (-Fe2O3), dan hematit (-Fe2O3). Ukuran kristal secara rata-rata dibawah 15 nm dengan ukuran partikel rata-rata diatas 700 nm. Struktur morfologi permukaan terdapat aglomerasi dengan bentuk permukaan yang bulat. Hasil ini menunjukkan metode kopresipitasi telah berhasil mendapatkan senyawa besi oksida dari batuan vulkanik Pulau Ambon.
References
Abid, M. A., Latif, L. A., Kadhim, D. A., & Aziz, W. J. (2021). Antimicrobial activity by diffusion method using iron oxide nanoparticles prepared from (Rose plant) extract with rust iron. Journal of Physics: Conference Series, 1879, 1–8.
https://doi.org/10.1088/1742-6596/1879/3/032068
Akram, M. W., Alam, M. F., Ji, H. N., Mahmood, A., Munir, T., Iqbal, M. Z., Saleem, M. R., Amin, N., & Wu, A. G. (2019). Chitosan blend iron oxide nanostructure-based biosensor for healthy & malignant tissue glucose/urea detection. IOP Conference Series: Materials Science and Engineering, 474(012060), 1–6.
https://doi.org/10.1088/1757-899X/474/1/012060
AL-Husseini, A. H., Sih, B. T., & Al-Araji, A. M. (2021). Green synthesis of iron oxide nanoparticles (Fe2O3) using saffron extract. Journal of Physics: Conference Series, 2114, 1–8. https://doi.org/10.1088/1742-6596/2114/1/012082
Alangari, A., Alqahtani, M. S., Mateen, A., Kalam, M. A., Alshememry, A., Ali, R., Kazi, M., AlGhamdi, K. M., & Syed, R. (2022). Iron Oxide Nanoparticles: Preparation, Characterization, and Assessment of Antimicrobial and Anticancer Activity. Adsorption Science and Technology, 2022, 1–9. https://doi.org/10.1155/2022/1562051
Bandhu, A., Sutradhar, S., Mukherjee, S., Greneche, J. ., & Chakrabarti, P. . (2015). Synthesis, characterization and magnetic property of maghemite (y-Fe2O3) nanoparticles and their protective coating with pepsin for bio-functionalization. Materials Research Bulletin, 70, 145–154.
https://doi.org/10.1016/j.materresbull.2015.04.035
Campos, E. A., Pinto, D. V. B. S., de Oliveira, J. I. S., Mattos, E. da C., & Dutra, R. de C. L. (2015). Synthesis, characterization and applications of iron oxide nanoparticles - A short review. Journal of Aerospace Technology and Management, 7(3), 267–276. https://doi.org/10.5028/jatm.v7i3.471
Chomchoey, N., Bhongsuwan, D., & Bhongsuwan, T. (2018). Effect of Calcination Temperature on the Magnetic Characteristics of Synthetic Iron Oxide Magnetic Nanoparticles for Arsenic Adsorption. Chiang Mai Journal of Science, 45(1), 528–539.
Cui, H., Liu, Y., & Ren, W. (2013). Structure switch between a-Fe2O3, c-Fe2O3 and Fe3O4 during the large scale and low temperature sol–gel synthesis of nearly monodispersed iron oxide nanoparticles. Advanced Powder Technology, 24(1), 93–97. https://doi.org/10.1016/j.apt.2012.03.001
Dewi, S. H., & Adi, W. A. (2018). Synthesis and characterization of high purity Fe3O4 and α- Fe2O3 from local iron sand. IOP Conference Series: Journal of Physics, 1091, 1–9.
Fatmaliana, A., Rahwanto, A., & Jalil, Z. (2016). Synthesis And Characterization Of Hematite (Fe2O3) Extracted From Iron Ore By Precipitation Method*. Jurnal Natural, 16(1), 15–17.
Gaire, M., Khatoon, N., Subedi, B., & Chrisey, D. (2021). Flexible iron oxide supercapacitor electrodes by photonic processing. Journal of Materials Research, 36(22), 4536–4546. https://doi.org/10.1557/s43578-021-00346-8
Guivar, J. A. R., MartÃnez, A. I., Anaya, A. O., Valladares, L. D. L. S., Félix, L. L., & Dominguez, A. B. (2014). Structural and Magnetic Properties of Monophasic Maghemite (γ-Fe2O3) Nanocrystalline Powder. Advances in Nanoparticles, 3, 114–121.
Hadi, F. H. Al, Haryati, T., Andarini, N., Suwardiyanto, & Sulistiyo, Y. A. (2023). Hydrothermal Synthesis of Hematite (α-Fe2O3) from Indonesia Iron Sand. Indonesian Chemica Letters, 2(1), 10–13. https://doi.org/10.19184/ICL.v2i1.367
Hmamouchi, S., El Yacoubi, A., & El Idrissi, B. C. (2022). Using egg ovalbumin to synthesize pure α-Fe2O3 and cobalt doped α-Fe2O3: structural, morphological, optical and photocatalytic properties. Heliyon, 8, 1–11. https://doi.org/10.1016/j.heliyon.2022.e08953
Honthaas, C., Maury, R. C., Priadi, B., Bellon, H., & Cotten, J. (1999). The Plio – Quaternary Ambon arc , Eastern Indonesia. TECTONOPHYSICS, 301, 261–281.
Kim, Y. Il, Kim, D., & Lee, C. S. (2003). Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method. Physica B: Condensed Matter, 337(1–4), 42–51. https://doi.org/10.1016/S0921-4526(03)00322-3
Kumar, R., Soam, A., Hussain, R., Mansuri, I., & Sahajwalla, V. (2020). Carbon coated iron oxide (CC-IO) as high performance electrode material for supercapacitor applications. Journal of Energy Storage, 32(101737), 1–11. https://doi.org/10.1016/j.est.2020.101737
Levish, A., Joshi, S., & Winterer, M. (2023). Chemical vapor synthesis of nanocrystalline iron oxides. Applications in Energy and Combustion Science, 15(100177), 1–9. https://doi.org/10.1016/j.jaecs.2023.100177
Lewerissa, R., Sismanto, S., Setiawan, A., & Pramumijoyo, S. (2018). The Study of Geological Structures in Suli and Tulehu Geothermal Regions (Ambon, Indonesia) Based on Gravity Gradient Tensor Data Simulation and Analytic Signal. Geosciences, 8(4), 1–21. https://doi.org/10.3390/geosciences8010004
Mohamed, A., Atta, R. R., Kotp, A. A., Abo El-Ela, F. I., Abd El-Raheem, H., Farghali, A., Alkhalifah, D. H. M., Hozzein, W. N., & Mahmoud, R. (2023). Green synthesis and characterization of iron oxide nanoparticles for the removal of heavy metals (Cd2+ and Ni2+) from aqueous solutions with Antimicrobial Investigation. Scientific Reports, 13(7227), 1–30. https://doi.org/10.1038/s41598-023-31704-7
Monshi, A., Foroughi, M. R., & Monshi, M. R. (2012). Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD. World Journal of Nano Science and Engineering, 02, 154–160. https://doi.org/10.4236/wjnse.2012.23020
Muflihatun, Shofiah, S., & Suharyadi, E. (2015). Sintesis Nanopartikel Nickel Ferrite (NiFe2O4) dengan Metode Kopresipitasi dan Karakterisasi Sifat Kemagnetannya. Jurnal Fisika Indonesia, 19(56), 20–25.
Mufti, N., Atma, T., Fuad, A., & Sutadji, E. (2014). Synthesis And Characterization of Black, Red and Yellow Nanoparticles Pigments From The Iron Sand. AIP Conference Proceedings, 1617, 165–169. https://doi.org/10.1063/1.4897129
Muhammad, M., Fatmaliana, A., & Jalil, Z. (2019). Study of hematite mineral (Fe2O3) extracted from natural iron ore prepared by co-precipitation method. IOP Conference Series: Earth and Environmental Science, 348, 1–4. https://doi.org/10.1088/1755-1315/348/1/012135
Nazari, M., Ghasemi, N., Maddah, H., & Motlagh, M. M. (2014). Synthesis and characterization of maghemite nanopowders by chemical precipitation method. Journal of Nanostructure in Chemistry, 4(2), 2–6. https://doi.org/10.1007/s40097-014-0099-9
Nengsi, S. W., Budiman, A., & Puryanti, D. (2016). Karakterisasi Struktur Kristal dan Sifat Magnetik Maghemit (γ-Fe2O3) yang Dioksidasi dari Magnetit (Fe3O4) dari Pasir Besi Batang Sukam Kabupaten Sijunjung Sumatera Barat dengan Variasi Waktu Oksidasi. Jurnal Fisika Unand, 5(3), 248–251.
Nnadozie, E. C., & Ajibade, P. A. (2022). Preparation, phase analysis and electrochemistry of magnetite (Fe3O4) and maghemite (γ-Fe2O3) nanoparticles. International Journal of Electrochemical Science, 17, 1–13. https://doi.org/10.20964/2022.12.05
Panariello, L., Besenhard, M. O., Damilos, S., Sergides, A., Sebastian, V., Irusta, S., Tang, J., Thanh, N. T. K., & Gavriilidis, A. (2022). Microwave-assisted flow synthesis of multicore iron oxide nanoparticles. Chemical Engineering and Processing - Process Intensification, 182(109198), 1–8. https://doi.org/10.1016/j.cep.2022.109198
Prodan, A. M., Iconaru, S. L., Ciobanu, C. S., Chifiriuc, M. C., Stoicea, M., & Predoi, D. (2013). Iron Oxide Magnetic Nanoparticles : Characterization and Toxicity Evaluation by In Vitro and In Vivo Assays. Journal of Nanomaterials, 2013, 1–10.
RadoÅ„, A., DrygaÅ‚a, A., HaweÅ‚ek, Å., & Åukowiec, D. (2017). Structure and optical properties of Fe3O4 nanoparticles synthesized by co-precipitation method with different organic modifiers. Materials Characterization, 131, 148–156. https://doi.org/10.1016/j.matchar.2017.06.034
Rahmawati, D. E., Khoiroh, L. M., Ningsih, R., Yusniyanti, F., Solawati, W., & Sari, P. (2020). Synthesis of Hematite Pigment (Α-Fe2O3) from Iron Lathe Waste using Precipitation-Sonication Method as Anti-Swelling on Wood. MECHTA: International Journal of Mechanical Engineering Technologies and Application, 1(2), 69–76.
Salavati-Niasari, M., Davar, F., & Mahmoudi, T. (2009). A simple route to synthesize nanocrystalline nickel ferrite (NiFe2O4) in the presence of octanoic acid as a surfactant. Polyhedron, 28(8), 1455–1458. https://doi.org/10.1016/j.poly.2009.03.020
Samrot, A. V., Sahithya, C. S., Selvarani A, J., Purayil, S. K., & Ponnaiah, P. (2021). A review on synthesis, characterization and potential biological applications of superparamagnetic iron oxide nanoparticles. Current Research in Green and Sustainable Chemistry, 4, 1–13. https://doi.org/10.1016/j.crgsc.2020.100042
Saragi, T., Santika, A. S., Permana, B., Syakir, N., Kartawidjaja, M., & Risdiana. (2017). Synthesis and Properties of Iron Oxide Particles Prepared by Hidrothermal Method. IOP Conference Series: Materials Science and Engineering, 196, 1–4. https://doi.org/10.1088/1757-899X/196/1/012025
Soekansa, A. F., Sudirman, N., & Aini, S. (2023). Sintesis dan Karakterisasi Pigmen Merah Hematit (α-Fe2O3) dari Pasir Besi Kabupaten Sijunjung, Sumatera Barat, Indonesia. Chemistry Journal of Universitas Negeri Padang, 12(1), 9–13.
Sumadiyasa, M., & Manuaba, I. B. S. (2018). Determining Crystallite Size Using Scherrer Formula, Williamson-Hull Plot, and Particle Size with SEM. Buletin Fisika, 19(1), 28–35.
Sundar, S., Venkatachalam, G., & Kwon, S. J. (2018). Sol-Gel Mediated Greener Synthesis of γ-Fe2O3 Nanostructures for the Selective and Sensitive Determination of Uric Acid and Dopamine. Catalysts, 8(512), 1–17. https://doi.org/10.3390/catal8110512
Tharani, K., Christy, A. J., Sagadevan, S., & Nehru, L. C. (2021). Photocatalytic and antibacterial performance of iron oxide nanoparticles formed by the combustion method. Chemical Physics Letters, 771(138524), 1–6. https://doi.org/10.1016/j.cplett.2021.138524
Tjokrosapoetro, S., Rusmana, E., & Achdan, A. (1993). Peta Geologi lembar Ambon, Maluku Skala 1:250.000 Lembar 2612-2613. Bandung: Pusltibang Geologi.
Vandani, C. P. K., Sari, I. W. A., Mulyaningsih, E., Utami, P., & Yunis, Y. (2014). Studi Alterasi Hidrotermal Bawah Permukaan di Lapangan Panas Bumi “ BETA â€, Ambon dengan Metode Petrografi. Prosiding Seminar Nasional Kebumian Ke-7, 356–369.
Wahyinto, I. R., Aritonang, A. B., & Zaharah, T. A. (2022). Extraction and Characterization of Fe2O3 from Red Mud PT. Indonesia Chemical Alumina West Kalimantan. Berkala Sainstek, 10(3), 155–161. https://doi.org/10.19184/bst.v10i3.30252
Wang, J., Sun, P., Xue, H., Chen, J., Zhang, H., & Zhu, W. (2020). Journal of Physics and Chemistry of Solids Red mud derived facile hydrothermal synthesis of hierarchical porous α-Fe2O3 microspheres as efficient adsorbents for removal of Congo red. Journal of Physics and Chemistry of Solids, 140(109379), 1–10.
Widodo, R. D., Priyono, Rusiyanto, Anis, S., Ichwani, A. A., Setiawan, B., Fitriyana, D. F., & Rochman, L. (2020). Synthesis and characterization of iron (III) oxide from natural iron sand of the south coastal area, Purworejo Central Java. Journal of Physics: Conference Series, 1444, 1–9. https://doi.org/10.1088/1742-6596/1444/1/012043
Winsett, J., Moilanen, A., Paudel, K., Kamali, S., Ding, K., Cribb, W., Seifu, D., & Neupane, S. (2019). Quantitative determination of magnetite and maghemite in iron oxide nanoparticles using Mössbauer spectroscopy. SN Applied Sciences, 1(12), 1–8. https://doi.org/10.1007/s42452-019-1699-2
Yang, H., Wang, H., Wen, C., Bai, S., Wei, P., Xu, B., Xu, Y., Liang, C., Zhang, Y., Zhang, G., Wen, H., & Zhang, L. (2022). Effects of iron oxide nanoparticles as T2-MRI contrast agents on reproductive system in male mice. Journal of Nanobiotechnology, 20(98), 1–18. https://doi.org/10.1186/s12951-022-01291-2
Zachariah, M. R., Aquino, M. I., Shull, R. D., & Steel, E. B. (1995). Formation of Superparamagnetic Nanocomposites From Vapor Phase Condensation In A Flame. NanoStructured Materials, 5(4), 383–392.
Zhuravlev, M., Sazonov, R., Kholodnaya, G., Pyatkov, I., & Ponomarev, D. (2019). Electrospark method for obtaining nanopowders. Journal of Physics: Conference Series, 1393, 1–6. https://doi.org/10.1088/1742-6596/1393/1/012156
Zulfiqar, Rahman, U., Usman, M., Hasanain, S. K., Rahman, Z. ur, Ullah, A., & Kim, W. (2014). Static Magnetic Properties of Maghemite Nanoparticles. Journal of the Korean Physical Society, 65(11), 1925–1929. https://doi.org/10.3938/jkps.65.1925
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Gede Wiratma Jaya, Delpina Nggolaon, Nikmans Hattu
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Please find the rights and licenses in JFU (Jurnal Fisika Unand).
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution-NonCommercial 4.0 International License.
2. Authors Warranties
The author warrants that the article is original, written by stated author(s), has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User Rights
JFU's spirit is to disseminate articles published are as free as possible. Under the Creative Commons license, JFU permits users to copy, distribute, display, and perform the work for non-commercial purposes only. Users will also need to attribute authors and JFU on distributing works in the journal.
4. Rights of Authors
Authors retain the following rights:
- Copyright, and other proprietary rights relating to the article, such as patent rights,
- The right to use the substance of the article in future own works, including lectures and books,
- The right to reproduce the article for own purposes, provided the copies are not offered for sale,
- The right to self-archive the article.
5. Co-Authorship
If the article was jointly prepared by other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or JFU upon two months notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating partys notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of JFU.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by JFU or its sublicensee.
8. Miscellaneous
JFU will publish the article (or have it published) in the journal if the articles editorial process is successfully completed and JFU or its sublicensee has become obligated to have the article published. JFU may conform the article to a style of punctuation, spelling, capitalization, referencing and usage that it deems appropriate. The author acknowledges that the article may be published so that it will be publicly accessible and such access will be free of charge for the readers.