Evaluasi Kerentanan Seismik Wilayah Kota Mamuju Pasca Gempa Bumi 15 Agustus 2021 Menggunakan Data Microtremor
DOI:
https://doi.org/10.25077/jfu.13.1.75-81.2024Keywords:
HVSR, Mamuju, Mikrotremor, SeismikAbstract
Pada tanggal 15 Januari 2021, pukul 02.28 WITA 2021 terjadi gempa bumi signifikan dengan magnitudo M 6,2 di wilayah pesisir barat pulau Sulawes. Gempa bumi tesebut disebabkan oleh aktivitas sesar lokal Mamuju dengan pola patahan naik (Thrust Fault). Gempa bumi majene-Mamuju memberikan dampak kerusakan yang besar pada konstruksi bangunana yang berada dipermukaan khususnya pada wilayah kota Mamuju yang menjadi ibukota wilayah Sulawesi Barat. Perlu adanya evaluasi untuk menganalisis dan memodelkan ancaman dampak gempa bumi di wilayah kota Mamuju. Salah satu motode yang dapat digunakan untuk mengevaluasi kerentanan seismik suatu wilayah dapat menggunakan metode Horizontal to Vertical Spectral Ratio (HVSR). Data yang digunakan merupakan data sinyal microtremor dari hasil pengukuran lapangan sebanyak 39 titik menggunakan portable seismometer TDS-303 jenis short period. Terdapat empat parameter output yang dapat digunakan untuk menganalisis dan engevaluasi kerentanan seismik yaitu frekuensi dominan (f0), faktor amplifikasi (A0), indeks kerentanan seismik (Kg), dan periode dominan (T0). Dari hasil pengukuran di lapangan, maka output HVSR tersebut dapat dipetakan untuk mengiterpretasikan sebaran data secara spasial. Hasil penelitian menunjukkan jika wilayah kota Mamuju memiliki nilai frekuensi dominan (f0) antara 0,608 Hz-0,97 Hz, faktor amplifikasi (A0) antara 1,01-7,69, indeks kerentanan seismik (Kg) antara 0,468-73,886, dan periode dominan (T0) antara 0,09 s-1,64 s. Dari hasil tersebut wilayah kota Mamuju yang berada dekat dengan pesisir pantai memiliki potensi kerentanan terhadap bahaya gempa bumi yang jauh lebih tinggi, jika dibandingkan dengan wilayah yang berada di sebelah selatan. Hal ini juga didukung oleh hasil perhitungan ketebalan sedimen yang berkisar antara 7,6 m-130,2 m dengan wilayah utara jauh lebih tebal dari wilayah sebelah selatan. Sehingga wiilayah pesisir kota Mamuju relatif lebih rentan terhadap potensi amplifikasi gelombang seismik dipermukaan.References
Abdialim, S., Hakimov, F., Kim, J., Ku, T., & Moon, S.-W. (2021). Seismic site classification from HVSR data using the Rayleigh wave ellipticity inversion: a case study in Singapore. Earthquakes and Structures, 21(3), 231–238.
Anbazhagan, P., Boobalan, A. J., & Shaivan, H. S. (2019). Establishing empirical correlation between sediment thickness and resonant frequency using HVSR for the Indo-Gangetic Plain. Current Science, 117(9), 1482–1491.
Apriyadi, R. K., Sutisna, S., Lasmono, L., & Januarti, R. T. (2021). Earthquake and tsunami potential levels in Sulawesi (lesson learned earthquake West Sulawesi). E3S Web of Conferences, 331, 7005.
Asten, M. W., Askan, A., Ekincioglu, E. E., Sisman, F. N., & Ugurhan, B. (2014). Site characterisation in north-western Turkey based on SPAC and HVSR analysis of microtremor noise. Exploration Geophysics, 45(2), 74–85.
Capizzi, P., & Martorana, R. (2022). Analysis of HVSR data using a modified centroid-based algorithm for near-surface geological reconstruction. Geosciences, 12(4), 147.
Gallipoli, M. R., Mucciarelli, M., Gallicchio, S., Tropeano, M., & Lizza, C. (2004). Horizontal to vertical spectral ratio (HVSR) measurements in the area damaged by the 2002 Molise, Italy, earthquake. Earthquake Spectra, 20(1_suppl), 81–93.
Gubbins, D. (1990). Seismology and plate tectonics. Cambridge University Press.
Guo, Z., Aydin, A., Huang, Y., & Xue, M. (2021). Polarization characteristics of Rayleigh waves to improve seismic site effects analysis by HVSR method. Engineering Geology, 292, 106274.
Hakimov, F., Domej, G., Ischuk, A., Reicherter, K., Cauchie, L., & Havenith, H.-B. (2021). Site amplification analysis of Dushanbe City Area, Tajikistan to support seismic microzonation. Geosciences, 11(4), 154.
Hamilton, W. B. (1979). Tectonics of the Indonesian region (Issue 1078). US Govt. Print. Off.
Jamroni, R., Imran, A. M., & Azikin, B. (2017). Analysis of Microtremor Data Using Horizontal to Vertical Spectral Ratio (HVSR) Method of Makassar, South Sulawesi. International Journal of Engineering and Science Applications, 4(1), 63–68.
Lay, T., & Wallace, T. C. (1995). Modern global seismology. Academic. Inc. San Diego, CA.
Liang, D., Gan, F., Zhang, W., & Jia, L. (2018). The application of HVSR method in detecting sediment thickness in karst collapse area of Pearl River Delta, China. Environmental Earth Sciences, 77, 1–9.
Martorana, R., Capizzi, P., D’Alessandro, A., Luzio, D., Di Stefano, P., Renda, P., & Zarcone, G. (2018). Contribution of HVSR measures for seismic microzonation studies. Annals of Geophysics.
Massinai, M. A. (2018). Tektonik dan Pengaruhnya Terhadap Potensi Bencana Kebumian di Wilayah Tana Toraja. Neutrino, 1(2), 25–31.
Mucciarelli, M., & Gallipoli, M. R. (2001). A critical review of 10 years of microtremor HVSR technique. Boll. Geof. Teor. Appl, 42(3–4), 255–266.
Murphy, J. R., & Shah, H. K. (1988). An analysis of the effects of site geology on the characteristics of near-field Rayleigh waves. Bulletin of the Seismological Society of America, 78(1), 64–82.
Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Railway Technical Research Institute, Quarterly Reports, 30(1).
Nakamura, Y. (1997). Seismic vulnerability indices for ground and structures using microtremor. World Congress on Railway Research in Florence, Italy.
Nakamura, Y. (2000). Clear identification of fundamental idea of Nakamura’s technique and its applications. Proceedings of the 12th World Conference on Earthquake Engineering, 2656.
Nakamura, Y. (2008). On the H/V Spectrum, The 14th World Conference on Earthquake Engineering. October.
Nogoshi, M. (1971). On the amplitude characteristics of microtremor, Part II. Journal of the Seismological Society of Japan, 24, 26–40.
Partono, W., Irsyam, M., RW, S. P., & Maarif, S. (2013). Aplikasi metode HVSR pada perhitungan faktor amplifikasi tanah di Kota Semarang. Media Komunikasi Teknik Sipil, 19(2), 125–134.
Parwatiningtyas, D., Ambarsari, E. W., Marlina, D., & Wiratomo, Y. (2013). Calculation Of Disaster Risk Value In The Prospect Mining Area, Blitar District, East Java Using Microtremor Analysis. The 3 Rd International Symposium For Sustainable Humanosphere (ISSH), 46–55.
Pranata, B., Yudistira, T., Saygin, E., Cummins, P. R., Widiyantoro, S., Brahmantyo, B., & Zulfakriza, Z. (2018). Seismic microzonation of Bandung basin from microtremor horizontal-to-vertical spectral ratios (HVSR). AIP Conference Proceedings, 1987(1).
PRASETYO, D. W. I. (2017). Pemetaan Persebaran Nilai Frekuensi Alamiah Dan Amplifikasi Menggunakan Metode HVSR dan Inversi HVSR Daerah Pidie. Skripsi Universitas Lampung.
Putti, S. P., & Satyam, N. (2020). Evaluation of site effects using HVSR microtremor measurements in Vishakhapatnam (India). Earth Systems and Environment, 4, 439–454.
Ratman, N., & Atmawinata, S. (1993). Peta Geologi Indonesia Lembar Mamuju dan Sekitarnya, Sulawesi. Skala (1: 250.000), Pusat Penelitian Dan Pengembangan Geologi, Bandung.
Ryanto, T. A., Iswanto, E. R., Indrawati, Y., Setiaji, A. B. W., & Suntoko, H. (2020). Sediment thickness estimation in Serpong experimental power reactor site using HVSR method. Jurnal Pengembangan Energi Nuklir, 22(1), 29–37.
Satoh, T., Kawase, H., & Matsushima, S. (2001). Differences between site characteristics obtained from microtremors, S-waves, P-waves, and codas. Bulletin of the Seismological Society of America, 91(2), 313–334.
Siddiqqi, J., & Atkinson, G. M. (2002). Ground-motion amplification at rock sites across Canada as determined from the horizontal-to-vertical component ratio. Bulletin of the Seismological Society of America, 92(2), 877–884.
Stanko, D., Markušić, S., Strelec, S., & Gazdek, M. (2017). HVSR analysis of seismic site effects and soil-structure resonance in Varaždin city (North Croatia). Soil Dynamics and Earthquake Engineering, 92, 666–677.
Telford, W. M., Geldart, L. P., & Sheriff, R. E. (2004). Applied geophysics 2nd ed.(digital version). Cambridge University Press, New York (770 pp.).
Trnkoczy, A. (2009). Understanding and parameter setting of STA/LTA trigger algorithm. In New manual of seismological observatory practice (NMSOP) (pp. 1–20). Deutsches GeoForschungsZentrum GFZ.
Downloads
Additional Files
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jurnal Fisika Unand
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Please find the rights and licenses in JFU (Jurnal Fisika Unand).
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution-NonCommercial 4.0 International License.
2. Authors Warranties
The author warrants that the article is original, written by stated author(s), has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User Rights
JFU's spirit is to disseminate articles published are as free as possible. Under the Creative Commons license, JFU permits users to copy, distribute, display, and perform the work for non-commercial purposes only. Users will also need to attribute authors and JFU on distributing works in the journal.
4. Rights of Authors
Authors retain the following rights:
- Copyright, and other proprietary rights relating to the article, such as patent rights,
- The right to use the substance of the article in future own works, including lectures and books,
- The right to reproduce the article for own purposes, provided the copies are not offered for sale,
- The right to self-archive the article.
5. Co-Authorship
If the article was jointly prepared by other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or JFU upon two months notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating partys notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of JFU.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by JFU or its sublicensee.
8. Miscellaneous
JFU will publish the article (or have it published) in the journal if the articles editorial process is successfully completed and JFU or its sublicensee has become obligated to have the article published. JFU may conform the article to a style of punctuation, spelling, capitalization, referencing and usage that it deems appropriate. The author acknowledges that the article may be published so that it will be publicly accessible and such access will be free of charge for the readers.