Numerical Simulation of Bird Strike with Varied L/D Ratio in Hemispherical-ended Cylinder Bird Model Using Coupled Eulerian Lagrangian Method

Authors

  • Endah Yuniarti Universitas Dirgantara Marsekal Suryadarma
  • S Afandi Sitompul Universitas Dirgantara Marsekal Suryadarma
  • B Aji Warsiyanto Universitas Dirgantara Marsekal Suryadarma

DOI:

https://doi.org/10.25077/jfu.12.4.628-638.2023

Keywords:

Bird strike, Hemispherical-ended cylinder, Coupled Eulerian-Lagrangian method, Length-to-diameter ratio

Abstract

This research studies the numerical simulation of the finite element method for bird strike using a hemispherical-ended cylinder bird model with varying length-to-diameter (L/D) ratio, namely 1.4; 1.5; 1.6; 1.7; 1.8; 1.9; and 2.0. Birds are modelled with elastic, plastic, and hydrodynamic behaviour. The bird model uses the Coupled Eulerian-Lagrangian (CEL) method with impact speeds of 100 ms-1, 200 ms-1, and 300 ms-1. The simulation results show that the Hugoniot pressure value is around 15-36 times higher than stagnation pressure in L/D 1.4; 14-36 times in L/D 1.5; 13-30 times in L/D 1.6; 12-32 times in L/D 1.7; 12-26 times in L/D 1.8; 13-30 times in L/D 1.9; and 13-29 times in L/D 2.0. It was found that the highest Hugoniot and stagnation pressure were in L/D 1.5 and 1.8, while the lowest Hugoniot and stagnation pressure were in L/D 2.0 and 1.5, respectively. In addition, the error of the numerical results of the average Hugoniot and stagnation pressure value compared to the analytic was 2.9% and 7%, respectively.

 

References

Alcock, A. W. R., & Collin, D. M. (1969). The Development of a Dummy Bird for use in Bird Strike Research. Technical Report, National Gas Turbine Establishment.

Airoldi, Cacchione 2006, ‘Modelling of Impact Forces and Pressures in Lagrangian Bird Strike Analyses’, International Journal of Impact Engineering, vol. 32, pp. 1651–1677.

Barber, J. P., Taylor, H. R., & Wilbeck, J. S. (1978). Bird Impact Forces and Pressures on Rigid and Compliant Targets. Technical Report AFFDL-TR-77-60. University of Dayton Ohio Research Institute. Air Force Flight Dynamics Laboratory.

Dolbeer, R. A., Begier, M. J., Miller, P. R., Weller, J. R., & Anderson, A. L. (2019). Wildlife Strikes to Civil Aircraft in the United States 1990-2018. Federal Aviation Administration. National Wildlife Strike Database.

Hedayati, R., & Sadighi, M. (2015). Bird Strike: An Experimental, Theoretical and Numerical Investigation. In Woodhead Publishing. https://doi.org/10.1016/C2014-0-02336-2

Heimbs, S. (2011). Computational Methods for Bird Strike Simulations: A Review. Computers and Structures, 89(23–24), 2093–2112. https://doi.org/10.1016/j.compstruc.2011.08.007

Lavoie, M.A., Gakwaya, A., Ensar, Nejad A. (2009). Birds Substitute Test Result and Evaluation of Available Numerical Methods, International Journal of Impact Engineering, 36, 1276-1287, https://doi.org/10.1016/j.ijimpeng.2009.03.009

McNaughtan, I. I. (1964). The Resistance of Transparencies to Bird Impact at High Speeds. In Aircraft Engineering and Aerospace Technology. https://doi.org/10.1108/eb033964

Nizampatnam, L. S. (2007). Models and Methods for Bird Strike Load Predictions. Wichita State University. http://books.google.co.uk/books?id=jwGtYgEACAAJ

Peterson, R. L., & Barber, J. P. (1976). Bird Impact Forces in Aircraft Windshield Design. Technical Report AFML-Tr-76-54, AFML, University of Dayton Research Institute, Dayton, Ohio, USA.

Republic Indonesia Ministry of Transportation. (2014). Civil Aviation Safety Regulations Part 25 Amdt 6 Airworhtiness Standards: Transport Category Airplanes.

SIMULIA. (2011). A Strategy for Bird Strike Simulations using Abaqus / Explicit (Issue Dassault Systems Online Support Document, Answer ID-4493 (Best Practices for Bird Strike Analysis)).

Vignjevic, R., Orłowski, M., De Vuyst, T., & Campbell, J. C. (2013). A Parametric Study of Bird Strike on Engine Blades. International Journal of Impact Engineering, 60, 44–57. https://doi.org/10.1016/j.ijimpeng.2013.04.003

Wilbeck, J. S. (1978). Impact Behavior of Low Strength Projectiles. Technical Report AFML-TR-77-134. Air Force Materials Laboratory. Wright-Patterson Air Force Base, Ohio, 45433, USA.

Wilbeck, J. S., & Rand, J. L. (1981). The Development of a Substitute Bird Model. Journal of Engineering for Gas Turbines and Power, 103(4), 725–730. https://doi.org/10.1115/1.3230795

Yuniarti, E., & Sitompul, S. A. (2019). Pengaruh Model Burung Silinder dan Silinder dengan Kedua Ujung Setengah Bola dengan Pemodelan Elemen Hingga Kasus Tabrak Burung. Jurnal Teknologi Dirgantara, 17, 41–56, http://dx.doi.org/10.30536/j.jtd.2019.v17.a3061

Yuniarti, E., Sitompul, S. A., Warsiyanto, Budi A. (2020). Analisis Numerik Pengaruh Geometri Burung Terhadap Tekanan Impak Pada Kasus Bird Strike Dengan Smoothed Particle Hydrodynamics (Sph) Model. Jurnal Teknologi Kedirgantaraan, Vol 5 No.1, 70–78, https://doi.org/10.35894/jtk.v5i1.426

Downloads

Published

2023-10-09

How to Cite

Yuniarti, E., Sitompul, S. A., & Warsiyanto, B. A. (2023). Numerical Simulation of Bird Strike with Varied L/D Ratio in Hemispherical-ended Cylinder Bird Model Using Coupled Eulerian Lagrangian Method. Jurnal Fisika Unand, 12(4), 628–638. https://doi.org/10.25077/jfu.12.4.628-638.2023

Issue

Section

Articles