PENGARUH PROSES OKSIDASI PADA LOGAM PADUAN ZR-2,5NB UNTUK MATERIAL BIOIMPLAN
DOI:
https://doi.org/10.25077/jfu.3.4.205-213.2014Abstract
ABSTRAK
Penelitian tentang pengaruh proses oksidasi pada logam paduan Zr-2,5Nb untuk material bioimplan telah dilakukan. Penelitian ini bertujuan untuk mengetahui stuktur mikro, kekerasan, ketahanan korosi dan toksisitas paduan logam Zr-2,5Nb sebelum dan sesudah dioksidasi. Pengujian stuktur mikro dengan mikroskop optik memperlihatkan paduan homogen berbentuk equiaxial. Proses oksidasi dilakukan menggunakan alat MSB selama 5 jam dengan variasi suhu 500ºC, 600ºC dan 700ºC. Pada oksidasi suhu 500°C tebal lapisan oksida berkisar antara 4,06 – 5,02 µm, pada suhu 600°C tebal lapisan antara 4,20 – 7,80 µm danpada suhu 700°C tebal lapisan oksida 19,00 – 23,60 µm. Sebelum oksidasi kekerasan sebesar 233,7 VHN. Pada logam setelah dioksidasi 500°C kekerasan rata-rata sebesar 242,4 VHN. Pada oksidasi 600°C kekerasan sebesar 261,2 VHN dan 700°C kekerasan sebesar 399,1 VHN. Nilai laju korosi sebelum oksidasi sebesar 0,0695 mpy. Setelah proses oksidasi nilai korosi sampel jauh lebih rendah yaitu sebesar 0,0094 mpy. Persentasi inhibisi paduan sebelum oksidasi sebesar 13,3 % dan setelah oksidasi memiliki persentasi inhibisi sebesar 0 %, yang sangat baik dimanfaatkan sebagai material bioimplan.
Kata kunci : paduan zirkonium, oksidasi MSB, kekerasan, korosi, metode in vitro, bioimplan
Abstract
Research on the effect of oxidation on the metal alloy Zr-2,5Nb for bioimplant material has been done. This research aims to find out the micro structure, hardness, corrosion resistance and toxicity of metal alloys Zr-2,5Nb before and after being oxidized. The micro structure tested by optical microscopy show a homogeneous alloy shaped equiaxial. The oxidation process is done using a MSB for 5 hours with temperature variations of 500ºC, 600ºC and 700ºC. Oxide layer thickness was measured by using SEM. At the oxidation temperature of 500°C the oxide layer thickness ranged from 4,06 to 5,02 µm, at a temperature of 600°C layer thickness between 4,20 and 7,80 µm and at temperature of 700°C the oxide layer thickness from 19,00 to 23,60 µm. Alloy hardness before oxidation  is 233,7 VHN, whereafter oxidized of 500 °C the average of metal hardness is 242,4 VHN. At 600°C oxidation the hardness is 261,2 VHN and 700°C is 399,1 VHN. Corrosion rate value before oxidation is 0,0695 mpy. After the oxidation process the corrosion rate value is much lower than before oxidation and equal to 0,0094 mpy. This is due to the presence of oxygen contained in the oxide layer. The percentage inhibition of oxidation of the alloy before oxidation is 13.3% and after oxidation is 0%, which is well used as material bioimplant.
Keywords : zirconium alloys, oxidation MSB, hardness, corrosion, in vitro methods, bioimplant
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Gemi Nastiti, Sri Handani, B Bandriyana
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Please find the rights and licenses in JFU (Jurnal Fisika Unand).
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution-NonCommercial 4.0 International License.
2. Authors Warranties
The author warrants that the article is original, written by stated author(s), has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User Rights
JFU's spirit is to disseminate articles published are as free as possible. Under the Creative Commons license, JFU permits users to copy, distribute, display, and perform the work for non-commercial purposes only. Users will also need to attribute authors and JFU on distributing works in the journal.
4. Rights of Authors
Authors retain the following rights:
- Copyright, and other proprietary rights relating to the article, such as patent rights,
- The right to use the substance of the article in future own works, including lectures and books,
- The right to reproduce the article for own purposes, provided the copies are not offered for sale,
- The right to self-archive the article.
5. Co-Authorship
If the article was jointly prepared by other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or JFU upon two months notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating partys notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of JFU.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by JFU or its sublicensee.
8. Miscellaneous
JFU will publish the article (or have it published) in the journal if the articles editorial process is successfully completed and JFU or its sublicensee has become obligated to have the article published. JFU may conform the article to a style of punctuation, spelling, capitalization, referencing and usage that it deems appropriate. The author acknowledges that the article may be published so that it will be publicly accessible and such access will be free of charge for the readers.