OTOMATISASI ROTARY SAMPLE COLLECTOR DENGAN MOTOR STEPPER BERBASIS MIKROKONTROLLER ATMEGA8535 DAN SENSOR FOTODIODA
DOI:
https://doi.org/10.25077/jfu.3.3.140-147.2014Abstract
Abstrak
Telah dirancang suatu sistem otomasi rotary sample collector berbasis mikrokontroler ATmega8535 untuk pengisian tabung reaksi secara otomatis. Rak tabung reaksi dirancang berbentuk piringan dari bahan karton tebal dengan diameter 22,7 cm dan massa 145 g, sedangkan poros pemutar piringan terbuat dari pipa PVC (polyvinyl chloride) berdiamter 2,2 cm dan massa 49,05 g. Sistem dirancang untuk mengisi dan merotasi 4 tabung reaksi. Pengisian tabung dengan zat cair dilakukan melalui kran elektrik (electric valve) yang katupnya dikontrol berdasarkan sinyal keluaran fotodioda. LED (light emitting diode) dan fotodioda berfungsi sebagai sistem sensor ketinggian zat cair dalam tabung. Ketika zat cair dalam tabung telah mencapai ketinggian tertentu, mikrokontroler mengirimkan sinyal untuk menutup katup kran, dan kemudian mengirim sinyal untuk menggerakkan motor stepper sejauh 90° (untuk 4 tabung). Ketika rotasi telah mencapai 90°, mikrokontroler mengirim sinyal untuk menghentikan motor stepper dan kemudian mengirimkan sinyal untuk membuka kran. Proses berulang hingga tabung ke-4 terisi. Tipe motor stepper yang digunakan adalah unipolar. Sistem motor stepper yang telah dibuat mampu memutar beban hingga 3445,36 g. Zat cair yang dapat dideteksi dalam sistem otomasi ini bergantung pada daya tembus cahaya yang dihasilkan LED; zat cair yang lebih bening memerlukan LED yang daya tembusnya lebih lemah.
Kata kunci: rotary sample collector, motor stepper, LED dan fotodioda, ATmega8535.
Abstract
An automation system of a rotary sample collector based on microcontroller ATmega8535 for filling test tubes has been designed. The test tube rack designed has a shape of disc made of a thick cardboard, diameter of 22.7 cm and mass of 145 g, while the axis of the disc rotor made of PVC (polyvinyl chloride) pipe with a diameter of 2.2 cm and mass of 49.05 g. The system is designed to fill and rotate 4 test tubes. The liquid is filled into the tube through an electric valve where its valve is controlled according to a photodiode output signal. LED (light emitting diode) and photodiode act as a sensor system to detect the level of liquid surface in the tube. When the liquid reaches a certain level, the microcontroller sends a signal to switch-off the valve, and then it sends a signal to drives the stepper motor to rotates 90° (for 4 tubes). After the 90° rotation is reached, the microcontroller sends another signal to switch-on the valve. The process repeats until the forth tube filled. The type of moter stepper used is unipolar. The stepper motor system is able to rotates a load up to 3445.36 g. The liquids which can be detected in this automation system depend on the light penetrability yield by the LED; the more transparent liquid requires the LED which the weaker light penetrability.
Key-words: stepper motor, test tube, photodiode, microcontroller ATmega8535.Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Nola Fridayanti, Wildian -
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Please find the rights and licenses in JFU (Jurnal Fisika Unand).
1. License
The non-commercial use of the article will be governed by the Creative Commons Attribution license as currently displayed on Creative Commons Attribution-NonCommercial 4.0 International License.
2. Authors Warranties
The author warrants that the article is original, written by stated author(s), has not been published before, contains no unlawful statements, does not infringe the rights of others, is subject to copyright that is vested exclusively in the author and free of any third party rights, and that any necessary written permissions to quote from other sources have been obtained by the author(s).
3. User Rights
JFU's spirit is to disseminate articles published are as free as possible. Under the Creative Commons license, JFU permits users to copy, distribute, display, and perform the work for non-commercial purposes only. Users will also need to attribute authors and JFU on distributing works in the journal.
4. Rights of Authors
Authors retain the following rights:
- Copyright, and other proprietary rights relating to the article, such as patent rights,
- The right to use the substance of the article in future own works, including lectures and books,
- The right to reproduce the article for own purposes, provided the copies are not offered for sale,
- The right to self-archive the article.
5. Co-Authorship
If the article was jointly prepared by other authors, the signatory of this form warrants that he/she has been authorized by all co-authors to sign this agreement on their behalf, and agrees to inform his/her co-authors of the terms of this agreement.
6. Termination
This agreement can be terminated by the author or JFU upon two months notice where the other party has materially breached this agreement and failed to remedy such breach within a month of being given the terminating partys notice requesting such breach to be remedied. No breach or violation of this agreement will cause this agreement or any license granted in it to terminate automatically or affect the definition of JFU.
7. Royalties
This agreement entitles the author to no royalties or other fees. To such extent as legally permissible, the author waives his or her right to collect royalties relative to the article in respect of any use of the article by JFU or its sublicensee.
8. Miscellaneous
JFU will publish the article (or have it published) in the journal if the articles editorial process is successfully completed and JFU or its sublicensee has become obligated to have the article published. JFU may conform the article to a style of punctuation, spelling, capitalization, referencing and usage that it deems appropriate. The author acknowledges that the article may be published so that it will be publicly accessible and such access will be free of charge for the readers.