Desain Alat Identifikasi Tipe Oli Berdasarkan Nilai Intensitas Cahaya Menggunakan Sensor Light Dependent Resistor Berbasis Mikrokontroler

Ahmad Zarkasi, Amirin Kusmiran, Erlinda Ratnasari Putri

Abstract


Oli memiliki kompatibilitas yang berbeda-beda pada suatu unit alat berat dan dapat mempengaruhi performa mesin. Oleh karena itu, alat identifikasi tipe oli telah dikembangkan pada penelitian ini dengan menggunakan sensor light dependent resistor (LDR). Oli yang dijadikan objek pengujian bermerek Caltex dengan tipe SAE 10, SAE 30, SAE 40, SAE 60, dan SAE 90 dengan nilai viskositas berturut-turut yakni 6,0 cSt, 11,7 cSt, 13,7 cSt, 14,2 cSt, dan 25,5 cSt. Pengujian dilakukan dengan menempatkan sampel oli di antara sumber cahaya dan sensor LDR. Intensitas cahaya yang diterima oleh sensor sangat dipengaruhi oleh kecerahan warna sampel oli yang digunakan. Nilai analog dari sensor selanjutnya diakuisisi oleh mikrokontroler Arduino Nano untuk diproses lebih lanjut. Hasil pengujian menunjukkan bahwa alat yang dirancang sudah bekerja dengan baik dan mampu mengenali tipe oli dengan tingkat akurasi sebesar 96,7 %. 

Keywords


Oli, Identifikasi, LDR, Mikrokontroler

Full Text:

PDF

References


Alabdan, R. et al. (2021) ‘Applications of temperature dependent viscosity for Cattaneo–Christov bioconvection flow of couple stress nanofluid over oscillatory stretching surface: A generalized thermal model’, Case Studies in Thermal Engineering, 28, p. 101412. doi: 10.1016/J.CSITE.2021.101412.

Alirejo, M. S., Daging, I. K. and Preston, J. (2018) ‘Kajian Penerapan Viskositas Minyak Pelumas pada Mesin Penggerak Utama Kapal Perikanan di PT. Hasil Laut Sejati’, Jurnal Kelautan dan Perikanan Terapan, 01(01), pp. 30–37.

Amhani, A. and Iqbal, Z. (2017) ‘Automated color sensor system using LDR and RGB leds controlled by Arduino’, ARPN Journal of Engineering and Applied Sciences, 12(19), pp. 5532–5537.

Arisandi, M., Darmanto, D. and Priangkoso, T. (2012) ‘Analisa Pengaruh Bahan Dasar Pelumas Terhadap Viskositas Pelumas Dan Konsumsi Bahan Bakar’, Jurnal Momentum UNWAHAS, 8(1), p. 114585.

Azevedo, K. and Olsen, D. B. (2019) ‘Engine oil degradation analysis of construction equipment in Latin America’, Journal of Quality in Maintenance Engineering, 25(2), pp. 294–313. doi: 10.1108/JQME-02-2018-0013.

Guan, L., Feng, X. L. and Xiong, G. (2008) ‘Engine lubricating oil classification by SAE grade and source based on dielectric spectroscopy data’, Analytica Chimica Acta, 628(1), pp. 117–120. doi: 10.1016/J.ACA.2008.09.004.

Hermawan, A. et al. (2019) ‘Analysis of Viscosity of Lubricating Oil on Generator Machine Working Hours at KP . Macan Tutul 4203’, Journal of Applied Science and Advanced Technology, pp. 69–74.

Kim, K. et al. (2020) ‘Characterization of engine oil additive packages on diesel particulate emissions’, Journal of Mechanical Science and Technology, 34(2), pp. 931–939. doi: 10.1007/s12206-020-0142-3.

Kong, L., Bai, J. and Li, W. (2021) ‘Viscosity-temperature property of coal ash slag at the condition of entrained flow gasification: A review’, Fuel Processing Technology, 215, p. 106751. doi: 10.1016/J.FUPROC.2021.106751.

Kumaresan, N. et al. (2019) ‘Engine Oil Color Monitoring System’, International Research Journal of Engineering and Technology (IRJET), 06(03), pp. 7750–7754.

Lumbantoruan, P. and Yulianti, E. (2016) ‘Pengaruh Suhu terhadap Viskositas Minyak Pelumas (Oli)’, Jurnal Sainmatika, 13(2), pp. 26–34.

Nugroho, R. N. and Sunarno, H. (2017) ‘Identifikasi Fisis Viskositas Oli Mesin Kendaraan Bermotor terhadap Fungsi Suhu dengan Menggunakan Laser Helium Neon’, Appj 2016, 8(2), pp. 1–5. Available at: https://ejournal.unri.ac.id/index.php/JST/article/view/3990/3874%0Ahttp://jetm.polinema.ac.id/.

Razavifar, M. and Qajar, J. (2020) ‘Experimental investigation of the ultrasonic wave effects on the viscosity and thermal behaviour of an asphaltenic crude oil’, Chemical Engineering and Processing - Process Intensification, 153, p. 107964. doi: 10.1016/J.CEP.2020.107964.

Sharma, V. et al. (2020) ‘Improvement in frictional behaviour of SAE 15W-40 lubricant with the addition of graphite particles’, Materials Today: Proceedings, 25, pp. 719–723. doi: 10.1016/J.MATPR.2019.08.190.

Willats, S. (2017) ‘A guide to Caltex products’, November, p. 68. Available at: https://caltex.co.nz/products-and-services/lubricants/.

Xu, Y. et al. (2021) ‘Heavy oil viscosity reduction at mild temperatures using palladium acetylacetonate’, Fuel, 294, p. 120546. doi: 10.1016/J.FUEL.2021.120546.

Yanaseko, T. et al. (2021) ‘Viscosity sensor with temperature measurement function based on multifunctional metal matrix composite’, Sensors and Actuators A: Physical, 331, p. 112518. doi: 10.1016/J.SNA.2020.112518.

Zhang, Y. et al. (2021) ‘Viscosity-temperature characteristics of high-concentration coal-oil slurry preheated by light solvent’, Fuel Processing Technology, 224, p. 107009. doi: 10.1016/J.FUPROC.2021.107009.

Zhu, Z. et al. (2021) ‘Study of the viscosity-temperature characteristics of cement-sodium silicate grout considering the time-varying behaviour of viscosity’, Construction and Building Materials, 306, p. 124818. doi: 10.1016/J.CONBUILDMAT.2021.124818.




DOI: https://doi.org/10.25077/jfu.10.4.518-524.2021

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Published by:

Departemen Fisika, FMIPA Universitas Andalas

Kampus Unand Limau Manis Padang Sumatera Barat 25163

Telepon 0751-73307

Email:jfu@sci.unand.ac.id