Three-State Quantum Heat Engine Based on Carnot Cycle

Trengginas Eka Putra Sutantyo

Abstract


In this paper,we consider three models of quantum heat engines based on Carnot cycle using three energy levels; (1) the ground state, (2) the degenerate state, and (3) the highest energy state. We investigate the variation in the transition state by selecting three different degenerated states. The result we obtained still analogous with the classical heat engine efficiency and also the previous Quantum Carnot Engine model, which only depends on the initial width and the final width of the potential well in isothermal expansion. Moreover, the effect of transition state generally can be accepted for multistate quantum heat engines with 3D systems in cubic potential.


Full Text:

PDF

References


Akbar, M, S., Latifah, E., and Wisodo, H., “Limit of Relativistic Quantum Brayton Engine of Massless Boson Trapped 1 Dimensional Potential Well”, Journal of Physics: Conference Series1093 (1), 012031 (2018).

Altintas, F., “Comparison of the coupled quantum Carnot and Otto cycles”, Physica A: Statistical Mechanics and its Applications, 523(C) 40-47 (2019)

Anders, J. and Giovannetti, V., “Thermodynamics of Discrete Quantum Processes”, New J. Phys.15, 033022 (2013).

Belfaqih, I. H., Sutantyo, T. E. P., Prayitno, T. B., and Sulaksono, A., “Quantum-Carnot Engine for Particle Confined to 2D Symmetric Potential Well”, AIP Conference Proceedings1677, 040010 (2015).

Bender, C. M., Brody, D. C., and Meister, B. K., “Quantum-Mechanical Carnot Engine”, J. Phys. A33 4427 (2000).

Callen, H. B., Thermodynamics and an Introduction to Thermostatistics (John Wiley and Sons, 1985).

Fernandez, J. J., and Omar S., “Maximum power of a two-dimensional quantum mechanical engine with spherical symmetry”, arXiv:1909.13590 [cond-mat.stat-mech] (2019)

Kieu, T. D., “Quantum Heat Engines, The Second Law and Maxwell’s Demon,” European Physical Journal D, 39 (1), 115-128 (2006).

Muñoz, E., Francisco, and Peña, J., “Quantum Heat Engine in the relativistic limit: The case of a Dirac-particle”, Phys. Rev. E86 061108 (2012).

Quan, H. T., Liu, Y. X., Sun, C. P., and Nori, F., “Quantum Thermodynamic Cycles and Quantum Heat Engines”, Phys. Rev. E76 031105 (2007).

Rezek, Y. and Kosloff, R., “Irreversible Performance of a Quantum Harmonic Heat Engine”, New J. Phys. 8 83 (2006).

Saputra, Y. D., and Purwanto, A., “Mesin Carnot Kuantum Berbasis Partikel Dua Tingkat di dalam Kota kPotensial Satu Dimensi”, Jurnal Fisika dan Aplikasinya 6 1 (2010).

Saputra, Y. D., and Rifani, A., “Quantum dual-engine based on one dimensional infinite potential well”, AIP Conference Proceedings2202, 020027 (2019).

Scovil, H. E. D, and Schultz-DuBois E., “Three-Level Masers as Heat Engines”, Phys. Rev. Lett.2 262 (1959).

Setyo, D. P., and Latifah, E., “Quantum Otto Engine based on Multiple-State Single Fermion in 1D Box System” Journal of Physics: Conference Series 1093 (1), 012030 (2018)

Singh, S., “Quantum Brayton Engine of Non-Interacting Fermions in a One-Dimensional Box”, arXiv:1908.09281 [cond-mat.stat-mech] (2019).

Sutantyo, T. E. P., Belfaqih, I. H., and Prayitno, T. B., “Quantum-Carnot Engine for Particle Confined to Cubic Potential”, AIP Conference Proceedings1677, 040011 (2015).

Thomas, G., Banik, M., and Ghosh, S., “Implications of Coupling in Quantum Thermodynamic Machines”. Entropy19, 442 (2017)

Zettili, N., Quantum Mechanics: concepts and applications. (John Wiley and Sons, 2009).




DOI: https://doi.org/10.25077/jfu.9.1.142-149.2020

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Trengginas Eka Putra Sutantyo

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Published by:

Jurusan Fisika, FMIPA Universitas Andalas

Kampus Unand Limau Manis Padang Sumatera Barat 25163

Telepon 0751-73307

Email:jfu@sci.unand.ac.id