Karakterisasi Sensor Liquefied Petroleum Gas (LPG) Dari Bahan Komposit SnO2-ZnO

Mardaleni Mardaleni, Elvaswer Elvaswer

Abstract


Telah dilakukan karakterisasi sensor gas LPG berbentuk pelet dari bahan komposit SnO2 dengan ZnO. Pelet sensor gas LPG dibuat dengan komposisi yang berbeda dengan perbandingan SnO2 dan ZnO yaitu 90%:10% mol, 70%:30% mol, 50%:50% mol, 30%:70% mol, 10%:90% mol, 100% mol SnO2, dan 100% mol ZnO. Pembuatan sensor gas LPG diawali dengan pencampuran bahan, kalsinasi pada suhu 500 oC selama 4 jam, penggerusan, kompaksi dan sintering pada suhu 700 oC selama 4 jam dengan menggunakan reaksi dalam keadaan padat. Sensor gas LPG diuji pada suhu ruang untuk mendapatkan karakteristik I-V, menghitung nilai sensitivitas, selektivitas, konduktivitas, waktu respon dan karakterisasi XRD. Berdasarkan pengukuran karakteristik I-V, sensitivitas tertinggi pada sampel 30% mol SnO2 + 70 % mol ZnO yaitu 4,74 pada tegangan 24 Volt. Nilai selektivitas tertinggi terdapat pada sampel 50% mol SnO2 + 50% mol ZnO yaitu 2,31 pada tegangan 24 volt. Nilai konduktivitas tertinggi dimiliki sampel 30% mol SnO2 + 70 % mol ZnO yaitu 12,32 x 10-4/Ω.m pada lingkungan LPG. Waktu respon sampel  30% mol SnO2 + 70 % mol ZnO yaitu 48 s pada tegangan 24 Volt. Hasil XRD menunjukkan ukuran kristal 30% mol SnO2 + 70% mol ZnO yaitu 53,20 nm lebih kecil dibandingkan dengan 100% ZnO dan 100% SnO2 yaitu 54,48 nm dan 53,21 nm.

 

Characterization of LPG gas sensor in the form of pellets made of SnO2 and ZnO composite was perfomed. LPG sensor pellets were made with a different composition with the ratio of SnO2 and ZnO are 90%:10% mol, 70%:30% mol, 50%:50% mol, 30%:70% mol, 10%:90% mol, 100% mol SnO2, dan 100% mol ZnO. The making of LPG gas sensors begins with mixing of material, calcining at 500 oC for 4 hours, grinding, compacting and sintering at 700 oC for 4 hours using solid state reaction method. LPG gas sensors was tested at room temperature by measuring the characteristics I-V, calculating sensitivity, selectivity, conductivity, response time and morphology. The highest sensitivity was obtained the sample 30% mol SnO2 + 70% mol ZnO is 4.74 at a voltage of 24 volts. The highest selectivity was obtained the sample 50% mol SnO2 + 50% mol ZnO is 2.31 at a voltage of 24 Volts. The highest conductivity value was given a sample of 30% mol SnO2 + 70% mol ZnO is 12.32 x 10-4 / Ω.m in the LPG environment. The response time of the sample is 30% mol of SnO2 + 70% mol of ZnO which is 48 s at a voltage of 24 Volts. The XRD results that the crystallite size of 30% mol SnO2 + 70% ZnO is 53.20 nm smaller than 100% ZnO and 100% SnO2 is 54.48 nm and 53.21 nm.


Full Text:

PDF

References


Basthoh, E., “Karakterisasi ZnO Didoping TiO2 untuk Detektor LPG”, Jurnal Ilmu Fisika, 5(1) , 11-15, (2013).

Cao, Y., Pana, W., Zonga, Y. dan Dianzeng, J., “Preparation and Gas Sensing Properties of Pure and Nd Doped ZnO Nanorods by Low-Heating Solid State Chemical Reaction”, Sensors and Actuators B, 138, 480-484, (2009).

Mondal, B., Basumatari, B., Das, J., Roychaudhury, C., Saha, H. dan Mukherjee, N., “ZnO-SnO2 based Composite Type Gas Sensor for Selective Hydrogensensing”, Sensor and Actuators B, 194, 389-396, (2014)

Patil, A., Dighavkar, C., dan Borse, R., “Al Doped ZnO Thick Films as CO2 Gas Sensors”, Journal of Optoelectronics and Advanced Materials, 13(10), 1331-1337, (2011).

Reyanda, D., Maulana, O. P. dan Ramadhan R. A., “Alat Pendeteksi gas LPG Dengan Sensor Gas TGS 2610 Berbasis Mikrokontroller ATmega 8535”, Jurnal Himpunan Diploma 3 Ahli Elektronika, 098(2), 11-19, (2013).

Shaposhnik, D., Pavelko, R., Liobert, E., Gisbert, G. F. dan Vilanova, X., “Hydrogen Sensors on The Basis of SnO2-TiO2 System”, Sensors and Actuators B, 25, 527-534, (2012).

Shukla, T. dan Omanwar, S.K., “Solid State Tin Oxide Based Gas Sensor for Liquefied Petroleum Gas Detection at Room Temperature”, SSRG International Journal of Medical Science, 1, 18-21, (2014).

Sivapunniyam, A., Wiromrat, N., Myint, M. T. Z. dan Dutta, J., “High Performance Liquefied Petroleum Gas Sensing Based on Nanostructures of Zinc Oxide and Zinc Stannate”, Sensors and Actuators B, 157, 232-239, (2011).

Wang, C. C., Akbar, S. A. dan Madau, M, J., “Ceramic Based Resistive Sensors”, Journal of Electroceramics, 2(4), 273-282, (1998).

Yadav, A., dan Yadav, B. C., “A Mechanochemical Synthesis of Nanostructured Zinc Oxide Via Acetate Route for LPG Sensing”, Journal of Experimental Nanoscience, 9(5), 501-511, (2014).

Yadav, B. C., Yadav, A., Shukla, T. dan Singh, S., “Solid State Titania-based Gas Sensor for Liquefied Petroeum Gas Detection at Room Temperature”, Bull. Mater. Sci, 34(7), 1639-1644, (2011).




DOI: https://doi.org/10.25077/jfu.9.1.125-133.2020

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Mardaleni Mardaleni, Elvaswer Elvaswer

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Published by:

Jurusan Fisika, FMIPA Universitas Andalas

Kampus Unand Limau Manis Padang Sumatera Barat 25163

Telepon 0751-73307

Email:jfu@sci.unand.ac.id