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 Solitons are wave phenomena or pulses that can maintain their shape 

stability when propagating in a medium. In optical fibers, they become 

general solutions of the Non-Linear Schrödinger Equation (NLSE). 

Despite its mathematical complexity, NLSE has been an interesting issue. 

Soliton analysis and mathematical techniques to solve problems of the 

equation keep doing. In this paper, we review the form of the bilinear 

formula for the case. We re-observed a one-soliton solution, their 

stability, and like soliton trains based on the formula, also verified the 

work of the last researcher. Here, the mathematical parameters of position 

α(0) and phase η are verified to become features of change in horizontal 

position and phase of one soliton in the (z, t) plane during propagation. In 

addition, we notice the soliton has established stability. Finally, for the 

condition Kerr effect focusing or the group velocity dispersion β2 more 

dominates, we present like the soliton trains in optical fibers under 

modulation instability of plane wave. 
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I. INTRODUCTION 

Technology has become a device and a primary human need in the modern world of 

communication. Reducing loss and improving the transmission quality of the technological 

communication system is the greatest challenge. The utilization of optical fibers is one of the alternative 

questions to answer. However, in modern optical fiber communication, loss, transmission quality, and 

information capacity issues have increasingly become a concern (Yan, X. W. & Chen, 2022). Hence, 

we need an idea that supports the optimal and efficient control of the information transmission process. 

It is the offering to process the transmission of information in the form of soliton pulses (Liu, W. J., 

Tian, B., Zhang, H. Q., Li, L. L. & Xue, 2008). 

Hasegawa, A. & Tappert (1973) was the first scientist to present soliton pulses to reduce loss 

issues in optical fiber transmission of information. It is a theoretical concept regarding modeling an 

optical beam (information carrier) into a single wave packet (soliton pulses) stable in fibers during 

propagation. The solitons theory in optical fiber has attracted considerable attention (Chen, X., Sun, Y., 

Gao, Y., Yan, X., Zhang, X., Wang, F., Suzuki, T., Ohishi, Y. & Cheng, 2021; Ripai, A., Abdullah, Z., 

Syafwan, M. & Hidayat, 2020; Yan, X. W. & Chen, 2022). Theoretically, we know fiber solitons 

dynamics obtainable formulated by the Non-Linear Schrödinger Equation (NLSE) (Agrawal, 2013). Its 

stability is clear from the right balance between the nonlinearity and the dispersion properties of optical 

fibers (Agrawal, 2013; Ripai, A., Abdullah, Z., Syafwan, M. & Hidayat, 2020). Only second-order 

dispersion is familiar considered in the equation yet. It urges our understanding of the bright soliton 

existence in the anomalous dispersion regime and dark solitons (the intensity profile contains a dip in a 

uniform background) in a normal dispersion regime (Mei-Hua, L., You-Shen, X. & Ji, 2004). When 

short pulses are considered (to nearly 50 fs), third-order dispersion becomes essential, so it must include 

in the NLSE model. Then, as the pulse width becomes even narrower (below 10 fs), the fourth-order 

dispersion must also be considered (Palacios, S. L. & Fernández-Diaz, 2001).  
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Hence, (Mei-Hua, L., You-Shen, X. & Ji, 2004) were motivated to study the extent to the higher order 

by considering the generalized NLSE with third and fourth-order dispersion and cubic-quintic 

nonlinearity.  

We rewrite the model as follows: 
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where ψ(z, t) denotes the complex amplitude of the optical pulse envelope, and βk, (k = 2, 3, 4) denotes 

the coefficients of k-th order dispersions, respectively. γ1,2 are the coefficients of the cubic and quintic 

nonlinear terms, respectively. The second term is called the group velocity dispersion, and the fifth term 

is the Kerr effect (or cubic nonlinearity). Meanwhile, the other terms are the expansion of the dispersion 

to the third and fourth-order and the quintic nonlinearity (Mei-Hua, L., You-Shen, X. & Ji, 2004).  

Equation (1) is the extension of general NLSE models into high order: (a) if β3 = β4 = γ2 = 0, it 

is standard NLSE and is known to describe the fundamental solitons in optical fibers (pulse width above 

100 fs), (b) if β3 = β4 = 0, i.e., no third and fourth-order dispersions, we can predict the bright-dark 

solitons even in the general dispersion regime, and only the situation of β3 = 0 satisfies this result, (c) if 

γ2 = 0, i.e., no quintic nonlinear term, it pushes our understanding of problems related to the time 

behavior of amplitude, velocity, and modulation instability of optical solitons (Yan, X. W. & Chen, 

2022). We can understand the soliton existence in optical fibers from the solution of Eq. (1). (Huang, 

Y. & Liu, 2014) justifies a direct transformation to derive the envelope wave solutions. (Sultan, A. M., 

Lu. D., Arshad, M., Rehman, H. U & Saleem, 2020) constructed the simple soliton solutions by the 

exponential expansion method. On the other hand, (Hong, 2002; Ma, W.-X. & Zhou, 2018; Mei-Hua, 

L., You-Shen, X. & Ji, 2004; Su, J.-J. & Gao, 2017) also obtained new optical solitons from this model. 

Recently, based on the bilinear formula, (Yan, X. W. & Chen, 2022) first studied the interaction of two 

solitons placed close together in optical fibers from Eq. (1). This paper is the bilinear formula 

perspective in the soliton theory of optical fibers through the equation. We re-observed the solution for 

a one-soliton from the formula and verified the work of (Yan, X. W. & Chen, 2022). As a novelty, we 

show the stability of its soliton during propagation. Besides, we investigate like soliton trains due to it 

the modulation instability of the system. We present and analyze based on the principles and related 

physical parameters. 

II. BILINEAR FORMULA 

Here, we rewrite bilinear formula to obtain soliton solutions of Eq (1). Following (Yan, X. W. 

& Chen, 2022), let us consider the transformation function of the complex amplitude of optical beams 

envelope: 

 ,
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where y(z, t) is a complex function and f(z, t) is a real function. In addition, we introduce a complex 

auxiliary function g(z,t). Substituting Eq. (2) in (1), we arrive at 
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Then, by the use of the condition γ1 = −β2 and γ2 = β4, we can eliminate the last two terms in Eq. (3).  

 

Finally, we can set the bilinear formula for Eq. (1): 
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where Dz, Dt are the bilinear operators, and * denotes complex conjugate (Hirota, 2004; Yan, X. W. & 

Chen, 2022). 

III. ONE-SOLITON SOLUTION  

We can complete the soliton solutions of Eq. (1) by expanding functions of  f,  y, and g in 

bilinear formula (4) and (5) as the expression of δ. In detail, the reads as (Yan, X. W. & Chen, 2022): 

 
( ) ( ) ( )

,++++1= 664422  ffff       (6) 
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where f(l), l = 2, 4, 6, … denote the real functions. Meanwhile, y(m), m = 1, 3, 5, … and g(n), n = 0, 2, 4, 

6, … are complex ones.  

Take the definition of y = y(1) δ,  f = 1 + f(2) δ2, and g = g(0) in Eq. (6)–(8). After that, substituting 

into the bilinear formula (4) and (5) (Yan, X. W. & Chen, 2022). In this case, we can obtain the one-

soliton solution in the form (supposing δ = 1) 
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where η and α(0) denote the complex constants (Yan, X. W. & Chen, 2022). 

IV. RESULT AND DISCUSSION 

 In this situation, we trace the one-soliton solution in optical fibers based on the extension of 

general NLSE (Eq. 1) models with the solution given by Eq. (9). Under the suitable parameter setting, 

Eq. (9) provides a unique description of the theoretical existence of one-soliton along in the (z, t) plane 

(Figure (1)-(3)): 

 

  Figure 1 One-soliton of solution (9) by choosing suitable parameters β2 = 0.02, β3 = 0.5, and β4 = 0.2:           

(a) η = α(0) = 0.5; (b) η = 0.5, α(0) = 5; (c) η = 0.5, α(0) = −5; (d) η = 0.5 + 2i, α(0) = 0.5.  
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 Figure (1a) shows us how the one-soliton propagates in the (z, t) plane. In this case, we see the 

position and phase of the soliton change based on the setting of the α(0) and η values. If we increase the 

value of α(0), one-soliton moves horizontally along the negative half axis of t (Figure (1b)). Contrary, if 

we decrease the value of α(0), one-soliton moves horizontally along the positive half axis of t (Figure 

(1c)). By choosing η = 0.5 + 2i, Figure (1d) shows that the phase of one-soliton changes. Overall, soliton 

profiles in Figure (1a)–(1d) are not visible to change. In a more physical sense, it maintains its shape 

stability during propagation. We present their stability verification in Figure (2) qualitatively. Therefore, 

we can justify (Yan, X. W. & Chen, 2022) claim that only features α(0) and η affect the horizontal position 

and phase one-soliton in the (z, t) plane. 

 

Figure 2 One-soliton propagation in the (z, t) plane by choosing parameters: β2 = 0.02, β3 = 0.5, β4 = 0.2,   

η = 0.5 + 2i and α(0) = 0.5.  

Figure (2) shows the schematics of one-soliton propagation in the (z, t) plane. The one-soliton 

appears to have well-established stability during propagation along the axis of z. Corresponding to the 

shape and the peak intensity of pulses, we can verify that there does not evolve along the plane. The 

stability of one-soliton is clear from the right balance between nonlinearity and optical fiber dispersion 

(Agrawal, 2013; Ripai, A., Abdullah, Z., Syafwan, M. & Hidayat, 2020). Hence, we need to set the 

suitable dispersion parameters of β2, β3, and β4, as given in Figure (2).   

 Suppose we set the value of the third and fourth-order dispersion parameters (β3 and β4) to be 

smaller. The NLSE (Eq. 1) models will have a more dominant consequence on the group velocity 

dispersion of β2. Its demands cubic nonlinearity (or Kerr effect) to take on more than quintic nonlinearity 

in one-soliton stabilization. Thus, we know that the Kerr effect type balances the group velocity 

dispersion to achieve soliton pulse stability (Agrawal, 2013).  

Meanwhile, quintic nonlinearity is more to the third and fourth-order dispersion (Baizakov, B. 

B., Bouketir, A., Al-Marzoug, S. M. & Bahlouli, 2019). In a more technical sense, it assumes the Kerr 

effect's focusing, where the support of quintic nonlinear is considered weak or even negligible. The 

consequence of setting smaller values of β3 and β4 demand focusing on the Kerr effect in optical fibers. 

This case pushes our understanding of the modulation instability of one-soliton pulse along the (z, t) 

plane. The form of modulation instability is like the soliton trains phenomenon in the plane (Figures 

(3b) and (3c)). 

 

Figure 3 (a) one-soliton stability in the (z, t) plane by choosing values β2 = 0.02, β3 = 0.5, β4 = 0.2, η = 0.5 

+ 2i and α(0) = 0.5, also, modulation instability when we choose (b) β3 = −5 and (c) β4 = −8.  
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Figure (3) shows the modulation instability of plane waves (soliton pulses) in optical fibers. 

First, we see that the one-soliton is stable after choosing suitable parameters (Fig. (3a)). Then, we set 

the parameter values as in the figure. In this situation, we observed modulation instability that assumes 

the focusing of Kerr effects, i.e., the group velocity dispersion β2 takes more dominants. Of course, this 

situation indicates that the one-soliton is in anomalous regimes (Agrawal, 2013; Ripai, A., Abdullah, 

Z., Syafwan, M. & Hidayat, 2021; Ripai, A. Sutantyo, T. E. P., Abdullah, Z., Syafwan, M. & Hidayat, 

2021). We found that the modulation instability causes the one-soliton to propagate like soliton trains 

along the plane (Figures (3b) and (3c)). It confirms the correctness of soliton train theories in optical 

fibers supported by a modulation instability of plane wave, as did (Baizakov, B. B., Bouketir, A., Al-

Marzoug, S. M. & Bahlouli, 2019). Finally, soliton trains are solitons that appear to be series in a row. 

Here, they present from modulation instability support, as shown in Figures (3b) and (3c). 

V. CONCLUSION 

In this paper, we understand that the extension of general NLSE (1) models into the third and 

fourth-order dispersions and quintic nonlinearity traced using the bilinear formula presents the one-

soliton solution with established stability in optical fibers. We verified that the mathematical parameters 

of α(0) and η affect one-soliton horizontal position and phase during propagation in the plane. Finally, 

we found like the soliton trains in the plane under modulation instability of plane wave, i.e., for the 

condition that assuming Kerr effect focusing or the group velocity dispersion more dominates. 
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