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 In this paper, we consider three models of quantum heat engines based on 

Carnot cycle using three energy levels; (1) the ground state, (2) the degenerate 

state, and (3) the highest energy state. We investigate the variation in the 

transition state by selecting three different degenerated states. The result we 

obtained still analogous with the classical heat engine efficiency and also the 

previous Quantum Carnot Engine model, which only depends on the initial 

width and the final width of the potential well in isothermal expansion. 

Moreover, the effect of transition state generally can be accepted for multistate 

quantum heat engines with 3D systems in cubic potential. 
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1. INTRODUCTION 

Since the beginning of the quantum era, physicists have tried to find various interrelated 

connections between classical physics and quantum physics, including the relevance of 

thermodynamics and quantum. Nowadays, quantum thermodynamics has become a very active 

research topic, especially for the issue of Quantum Heat Engine (QHE) models (Ferdi, 2019); 

(Fernandez and Omar, 2019); (Singh, 2019); (Saputra and Rifani, 2019); (Akbar et al., 2018); (Setyo 

and Latifah, 2018); (Thomas et al., 2017); (Anders and Giovannetti, 2013); (Muñoz et al., 2012); 

(Latifah and Purwanto, 2011); (Quan et al., 2007); (Rezek and Kosloff, 2006). Started by the pioneers 

of QHE idea, Scovil and Schulz-DuBois (1959), the purpose of the quantum approach in modeling a 

heat engine is to discover the most efficient heat engine model. As we know the efficiency of Classical 

Heat Engine (CHE) restricted by the second law of thermodynamics (Callen, 1985), i.e., the ratio 

between absorbed heat and produced mechanical work will always less than 1 

 1
AbsQ

W
  (1) 

In contrast with CHE, QHE produce the work by utilizing quantum effects, such as discrete 

energy levels, quantum coherence, or quantum confinement (Saputra and Purwanto, 2010). According 

to those quantum properties, physicists expect QHE will obtain a more efficient cycle than a CHE. 
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However, QHE also uses classical thermodynamic cycles such as Otto (Rezek and Kosloff, 2006), 

Brayton (Singh, 2019), and Carnot cycle (Bender et al., 2000). Bender et al. (2000) propose the 

theoretical QHE model based on Carnot cycle that obtains the efficiency as follow  

 
H

C

E

E
1  , (2) 

in which EC and EH are Hamiltonian expectation values that analogous with the classical quantities TC 

and TH. Besides, several other analogies such as the potential well width analog to the piston volume 

and the force exerted by the particle follows the relation 

 
 

dL

LdE
F  , (3) 

analogous with the pressure on the piston wall. Those analogies produce efficiencies relevant to the 

CHE (Bender et al., 2000); (Belfaqih et al., 2015); (Sutantyo et al., 2015). The development of Bender 

et al. model by using 2D (Belfaqih et al., 2015) and 3D (Sutantyo et al., 2015) system get a more 

efficient heat engine. 

This paper will discuss a three-state quantum heat engine model based on Carnot cycle by 

using Sutantyo et al. (2015) formalism. This paper organized as follows: Chapter II discusses three 

models of Quantum Carnot Engine. We variate the transition state by selecting various degeneration 

states. In chapter III, we calculate the heat engine efficiency. And then in the last chapter, we discuss 

the comparison of QHE models with two states model and concludes the overall result according to 

the addition of a degenerated state. 

2. FORMALISM OF QUANTUM CARNOT ENGINE 

In this section, we will compare three heat engine models based on Carnot cycle, each model 

has three energy states. From the Schrödinger equation  EĤ  for a particle with mass m in a 

3D cubic potential with volume L
3
, we get an eigen-energy (Zettili, 2009), 
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 (4) 

The first energy level is (1) the ground state with nxnynz = (111). Second level (2) has three  

different of each model as follow; for model A with nxnynz = (211), (121), (112), whereas model B 

with nxnynz = (221), (212), (122), and model C with nxnynz = (311), (131), (113). The highest state (3) 

is the fourth level of excitation with nxnynz = (222), which will be achieved by the system when the 

isothermal expansion process ends. During isothermal processes, Hamiltonian expectation value 

remains constant. Whereas the adiabatic processes occur in the same state. We start from the ground 

state, with energy 
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By substituting (5) into (3), we have the forces on the moving-side cubic potential 
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 . (6) 

From (5) and (6), we calculate the force in every single thermodynamics process for each QHE model. 
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2.1 Quantum Carnot Engine Model A 

In this model, the state of the system is a linear combination of ground state, first excitation 

state, and fourth excitation state, which is represented by 

   222222112112121121211211111111  aaaaaA  . (7) 

By using the relation 12

222

2

112

2
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2
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2

111  aaaaa , we simplify the Hamiltonian expectation value 

E(L) as a function L, only depending on the probability constant 111a  and 222a . The first process is 

isothermal expansion; the system keeps the energy constant. This condition can occur only if the 

energy 
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same as the ground state energy in (5), so we have relations  
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We get the force on this process by using relation (3), 
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After that, the particle uses this force to push the moving sides when L(A)2 = 2L(A)1, when the state has 

reached the fourth level of excitation, a111 = 0 and
 
a222 = 1. The Hamiltonian expectation value express 

as, 
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The next process is adiabatic expansion. By using energy from the eq. (11), the force of 
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push the moving-sides of cubic potential from L(A)2 to L(A)3 = k(A)L(A)2, and k(A) > 1. Adiabatic expansion 

occurs in the highest state. At the end of this process, the Hamiltonian expectation value is reduced to 

 
 

 
2

3

22

2

12

A

A

C
mL

E


 . (13) 

Then, the system isothermally compresses from L3 to L4. In this process, the particle deexcitates from 

the fourth level to the ground state. In order to keep Hamiltonian expectation value remains constant, 

we set (13) equal to (8), so the width relation is  
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The Forces  



Sutantyo: Three-State Quantum Heat Engine Based on Carnot Cycle   

ISSN: 2302-8491 (Print); ISSN: 2686-2433 (Online)  145 

 
        

  LmL
LFLFLF

A

A

z

A

y

A

x 2

3

22

333

12 
  (15) 

hold the wall movement until it reaches the maximum compression, L(A)4 = L(A)3/2, when the system 

returns to the ground state, a111 = 1 and
 
a222 = 0. During this process, the Hamiltonian expectation 

value constant at 
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In the last process, the system adiabatically compresses until it returns to L1. The system 

remains in a ground state with the Hamiltonian expectation value increasing up to  
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which is used as the initial energy of the next cycle. The force in this process is 
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2.2 Quantum Carnot Engine Model B 

The state of the Model B system is a linear combination of ground state, second excitation 

level, and fourth excitation level, which is represented by the wave function 

   222222122122212212221221111111  aaaaaB   (19) 

and 12
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111  aaaaa . The formalism of model B is similar to model A. The first 

process is isothermal expansion. To keep the eigenvalue constant, then E
(B)

 (L), 
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set the same as EH in (5), so we obtain the relation  
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Substitute (20) to (3) and by using (21), the force in this process is 

      
LmL

LFLFLF
B

B

z

B

y

B

x 2

1)(

22
)(

1

)(

1

)(

1

3 
 . (22) 

Then, the moving-sides of the cubic potential reach the farthest distance when L(B)2 = 2L(B)1, in which 

the particle is excited to the fourth level, a111 = 0 and
 
a222 = 1. Hamiltonian expectation value at the end 

of this process is given by, 
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The next process is adiabatic expansion which entirely occurs in the third level energy of the 

system. The force  
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used to push moving-sides up to L(B)3 = k(B)L(B)2 with k(B) > 1. As a consequence of the adiabatic 

expansion process, the Hamiltonian expectation value decreases to  
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After the adiabatic process, the next process is isothermal compression. In this process, the 

state change from the fourth level to the ground state. In order to accommodate the Hamiltonian 

expectation remain constant, so we set (29) equal to (5) and get  
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Particle holds the movement of the moving sides with forces  
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until it reaches maximum compression, L(B)4 = L(B)3/2, when the state returns to ground state. The 

Hamiltonian expectation value is constant at 
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Furthermore, in the next process, the moving-sides return to initial width L1. During this adiabatic 

process, the system remains in the ground state. As a result of compression, the Hamiltonian 

expectation value increases to 
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We obtain the force at the end of the process is  

 
        

3

22

444

3

mL
LFLFLF B

z

B

y

B

x


 . (30) 

2.3 Quantum Carnot Engine Model C 

The model C of heat engine has the highest transition state compare to the model A and B. 

The state of the system is a linear combination of ground state, third excitation, and fourth excitation, 

represent in the form 

   222222113113131131311311111111  aaaaaC   (31) 

and 12
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111  aaaaa . The thermodynamic cycle of the model C is same as the two 

previous models. First, this engine expands isothermally with the Hamiltonian expectation value 

remains constant, so we set E
(C)

(L) 
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equal to EH in (5) in order to obtain the relation  
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We substitute (32) into (3) and use the relation (33) to get the force 
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Then, the cubic potential moving-sides expand until achieved L(C)2 = 2L(C)1, which is in the third state 

a111 = 0 and
 
a222 = 0. Energy at the end of this process is 
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After that, the system continues the thermodynamic process with adiabatic expansion. During 

adiabatic process, the system occurs in the third state. The Force  
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use to expand the moving sides until satisfied the condition L(C)3 = k(C)L(C)2, with k(C) > 1. The 

Hamiltonian expectation value decreases to,  
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as adiabatic expansion result. The final process is isothermal compression in which the Hamiltonian 

expectation value remains constant. In order to satisfy that, we set (37) equal to (35) to get, 
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The Force 
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compress the system until it reaches L(C)4 =L(C)3/2, or when the state turns back to the initial state. The 

Hamiltonian expectation value has not changed, which is equal to 
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The last process in a single cycle is adiabatic compression. The Force 
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push the moving sides return to the initial width L1. During this compression, the system remains in 

the ground state. and the Hamiltonian expectation value increases to 
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3. RESULT AND DISCUSSION 

The forces of the same quantum thermodynamic process in each model have identical 

magnitudes. As a consequence, we can calculate the works done by heat engines in general formalism 

through the relation as follow 
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with, i =A, B, C is the index for all three models. So the works are  
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From (1) to get the efficiency of a heat engine, we also must calculate the amount of energy absorbed 

Q into the system, in general for all models we get  
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Furthermore, the efficiencies are written in the form 
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by assuming       i
ii LL 

2

31 . By substituting the cold energy EC and hot energy EH into (46) for 

each model, we have the efficiency of all heat engine models similar to previous result (Bender et al., 

2000); (Belfaqih et al., 2015); (Sutantyo et al., 2015) as represent in (2) 
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The amount of energy absorbed by every model only comes from the initial conditions at the 

ground state. The second state level does not contribute to the energy absorption process during 

isothermal expansion. According to (45), QAbs depends only on the force F1 produced by the energy in 

the ground state only. Moreover, by using the completeness relations, we can easily reduce transition 

states in Hamiltonian expectation value E (L) only depending on the initial state and the highest state. 

These results are consistent with the analogy applied (Bender et al., 2000); (Belfaqih et al., 2015); 

(Sutantyo et al., 2015), that the efficiency of the QHE model only depends on the ratio of the initial 
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width and the final width of the potential well after isothermal expansion process complete (Saputra 

and Purwanto, 2010). Another quantity reviewed is the gradient of the efficiency, shown in eq. (46). If 

all models have the same gradient, which is 4; therefore, all models have the same efficiency (Belfaqih 

et al., 2015); (Sutantyo et al., 2015). Because the working substance obey quantum nature, QHE has 

unusual and exotic properties. For example, under some conditions, QHEs can surpass the maximum 

limit on the amount of work done by a classical thermodynamic cycle (Kieu, 2006) and also surpass 

the efficiency of a classical Carnot Engine cycle.  

4. CONCLUSION 

We have shown the efficiency of QHE based on Carnot cycle have the same gradient for all 

three different models. We can conclude that the effect of the degenerate state does not exist explicitly 

due to the contribution of the transition state reduce by completeness relation. This result can be 

generalized to any number of transition states applied to the system; in other words, generally applies 

to the multistate system. However, the effect of degenerate state can easily exist if we consider it in the 

highest state. Further research and more discussion are needed outside this manuscript. We still work 

to consider the degree of degeneration in the transition state and highest state. 

REFERENCES 

Akbar, M, S., Latifah, E., and Wisodo, H., “Limit of Relativistic Quantum Brayton Engine of Massless Boson 

Trapped 1 Dimensional Potential Well”, Journal of Physics: Conference Series 1093 (1), 012031 

(2018). 

Altintas, F., “Comparison of the coupled quantum Carnot and Otto cycles”, Physica A: Statistical Mechanics and 

its Applications, 523(C) 40-47 (2019). 

Anders, J. and Giovannetti, V., “Thermodynamics of Discrete Quantum Processes”, New J. Phys.15, 033022 

(2013).  

Belfaqih, I. H., Sutantyo, T. E. P., Prayitno, T. B., and Sulaksono, A., “Quantum-Carnot Engine for Particle 

Confined to 2D Symmetric Potential Well”, AIP Conference Proceedings 1677, 040010 (2015). 

Bender, C. M., Brody, D. C., and Meister, B. K., “Quantum-Mechanical Carnot Engine”, J. Phys. A33 4427 

(2000). 

Callen, H. B., Thermodynamics and an Introduction to Thermostatistics (John Wiley and Sons, 1985). 

Fernandez, J. J., and Omar S., “Maximum power of a two-dimensional quantum mechanical engine with 

spherical symmetry”, arXiv:1909.13590 [cond-mat. stat-mech] (2019). 

Kieu, T. D., “Quantum Heat Engines, The Second Law and Maxwell’s Demon,” European Physical Journal D, 

39 (1), 115-128 (2006). 

Muñoz, E., Francisco, and Peña, J., “Quantum Heat Engine in the relativistic limit: The case of a Dirac-particle”, 

Phys. Rev. E 86 061108 (2012). 

Quan, H. T., Liu, Y. X., Sun, C. P., and Nori, F., “Quantum Thermodynamic Cycles and Quantum Heat 

Engines”, Phys. Rev. E 76 031105 (2007). 

Rezek, Y. and Kosloff, R., “Irreversible Performance of a Quantum Harmonic Heat Engine”, New J. Phys. 8 83 

(2006). 

Saputra, Y. D., and Purwanto, A., “Mesin Carnot Kuantum Berbasis Partikel Dua Tingkat di dalam Kotak 

Potensial Satu Dimensi”, Jurnal Fisika dan Aplikasinya 6 1 (2010). 

Saputra, Y. D., and Rifani, A., “Quantum dual-engine based on one dimensional infinite potential well”, AIP 

Conference Proceedings 2202, 020027 (2019). 

Scovil, H. E. D, and Schultz-DuBois E., “Three-Level Masers as Heat Engines”, Phys. Rev. Lett. 2 262 (1959). 

Setyo, D. P., and Latifah, E., “Quantum Otto Engine based on Multiple-State Single Fermion in 1D Box System” 

Journal of Physics: Conference Series 1093 (1), 012030 (2018). 

Singh, S., “Quantum Brayton Engine of Non-Interacting Fermions in a One-Dimensional Box”, 

arXiv:1908.09281 [cond-mat. stat-mech] (2019). 

Sutantyo, T. E. P., Belfaqih, I. H., and Prayitno, T. B., “Quantum-Carnot Engine for Particle Confined to Cubic 

Potential”, AIP Conference Proceedings 1677, 040011 (2015). 

Thomas, G., Banik, M., and Ghosh, S., “Implications of Coupling in Quantum Thermodynamic Machines”. 

Entropy 19, 442 (2017) 

Zettili, N., Quantum Mechanics: concepts and applications. (John Wiley and Sons, 2009). 


